首页 >
关系
✍ dations ◷ 2025-12-07 03:45:11 #关系
在数学上,关系是对如等于 =或序<等二元关系的广义化。参考一个如“X认为Y喜欢Z”之类的关系,其实际情形如下:上表的每一行都代表着一个事实,并给出“X认为Y喜欢Z”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合P上的关系S,其中:包括表中所有的人物。表中的资料则等同于如下的有序对:若较不严谨些,通常会将S(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系S为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。k元关系在数学上有两种常见的定义。定义1在集合X1,…,Xk上的关系L是指集合的笛卡儿积的子集,写成L ⊆ X1 ×…× Xk。因此,在此定义下,k元关系就是个k元组的集合。第二个定义用到数学上一个常见的习惯-说“某某为一n元组”即表示此一某某数学物件是由n组数学物件的描述来判定的。在于集合k上的关系L中,会有k+1件事要描述,即k个集合加上一个这些集合笛卡儿积的子集。在此习惯下,L可以说是一个k+1元组。定义2在集合X1,…,Xk上的关系L是一个k+1元组L = (X1,…, Xk, G(L)),其中G(L)是笛卡儿积X1 ×…× Xk的子集,称之为L的“关系图”。两个正整数n和m之间“可除性”的关系是指“n 整除m”。此一关系通常用一特殊的符号“ | ”来表示它,写成“n|m”来表示“n整除m”。若要以集合来代表这二元关系,即是设正整数的集合P = {1,2,3,…},然后可除性就是一个在P上的二元关系D,其中D为一包含了所有n|m的有序对 (n,m)。例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或D(2,4)和D(6,72)。对三维空间内的线L,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。换句话说,若 P(L,M,N)表示线 L,M,N共面,且Q(L,M)表示线 L,M共面,则Q(L,M),Q(M,N)和Q(N,L)不能合起来代表P(L,M,N)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。第一个是,如x轴、y轴和z轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。n元谓词就是含有n个变量的布尔值函数。由于上述的n元关系定义了 (x1, ..., xn)属于R时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:许多事物有多个元素两两关系。例如:1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。
相关
- 尚柏朗过滤器尚柏朗过滤器,或称巴斯德-尚柏朗过滤器,是由查理斯·尚柏朗于1884年发明的陶瓷制滤水器。其原理和伯克菲尔德过滤器(英语:Berkefeld filter)类似。该过滤器由陶瓷制的内外管构成
- 螨传播螨(英语:mite, 音mán)是一种八足生物,是蜘蛛的近亲。螨的体形极小,必须借助显微镜观察。螨又可分为尘螨(dust mite)与农业螨,其中农业螨又有叶螨(spider mite)、拟叶螨(false spider mi
- 黑粉菌亚门根肿黑粉菌纲(Entorrhizomycetes) 黑粉菌纲(Ustilaginomycetes) 外担菌纲(Exobasidiomycetes) 地位未定黑粉菌亚门(学名:Ustilaginomycotina)是担子菌门下的一个亚门。该亚门下含根肿
- 日本四大公害病日本四大公害病(日语:公害病/こうがいびょう Kōgaibyō */?;“公害”即污染)指的是日本在高度经济发展期,由产业活动所排出的有害物质而引起的疾病。被列举出的有因大气污染所
- 伯氏疏螺旋体伯氏疏螺旋体(Borrelia burgdorferi),也译作博氏疏螺旋体、布氏疏螺旋体,巴格朵夫疏螺旋菌,莱姆病螺旋体,是一种螺旋体。伯氏疏螺旋体是莱姆病的病原体,由蜱传播给人类。伯氏疏螺旋
- 土库曼斯坦面积家用电源国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2017年估计人类发展指数 以下资讯是以2018年估计立国历史土库曼斯
- 厄瑞克忒翁神庙厄瑞克忒翁神庙(古希腊语:Ἐρέχθειον)是古希腊建筑的杰出代表,也是古雅典最为重要的神庙之一。神庙位于雅典卫城北侧,建于公元前421年至公元前406年,采用的是爱奥尼亚柱
- 龙线虫病麦地那龙线虫病,又名几内亚线虫病(GWD),是龙线虫感染所引发的疾病。人类饮用不洁净的水后,如果水中含有感染了龙线虫幼虫的水蚤,就会受到感染。患者起初没有症状。大约一年后,母虫
- 背景调查背景调查是由独立专业机构依托权威数据源,通过合法的途径和方式对被调查人提交的个人背景信息进行核查比对,并形成背景调查报告以辅助委托调查人验证其真伪。通常在企业、政府
- 微管组织中心微管组织中心(英语:Microtubule organizing center)是存在于真核细胞内的一种结构,微管在该处聚合。微管组织中心有两个主要功能:微管组织中心可供形成微管核,在细胞中可以使用免
