首页 >
关系
✍ dations ◷ 2025-11-27 08:04:41 #关系
在数学上,关系是对如等于 =或序<等二元关系的广义化。参考一个如“X认为Y喜欢Z”之类的关系,其实际情形如下:上表的每一行都代表着一个事实,并给出“X认为Y喜欢Z”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合P上的关系S,其中:包括表中所有的人物。表中的资料则等同于如下的有序对:若较不严谨些,通常会将S(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系S为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。k元关系在数学上有两种常见的定义。定义1在集合X1,…,Xk上的关系L是指集合的笛卡儿积的子集,写成L ⊆ X1 ×…× Xk。因此,在此定义下,k元关系就是个k元组的集合。第二个定义用到数学上一个常见的习惯-说“某某为一n元组”即表示此一某某数学物件是由n组数学物件的描述来判定的。在于集合k上的关系L中,会有k+1件事要描述,即k个集合加上一个这些集合笛卡儿积的子集。在此习惯下,L可以说是一个k+1元组。定义2在集合X1,…,Xk上的关系L是一个k+1元组L = (X1,…, Xk, G(L)),其中G(L)是笛卡儿积X1 ×…× Xk的子集,称之为L的“关系图”。两个正整数n和m之间“可除性”的关系是指“n 整除m”。此一关系通常用一特殊的符号“ | ”来表示它,写成“n|m”来表示“n整除m”。若要以集合来代表这二元关系,即是设正整数的集合P = {1,2,3,…},然后可除性就是一个在P上的二元关系D,其中D为一包含了所有n|m的有序对 (n,m)。例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或D(2,4)和D(6,72)。对三维空间内的线L,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。换句话说,若 P(L,M,N)表示线 L,M,N共面,且Q(L,M)表示线 L,M共面,则Q(L,M),Q(M,N)和Q(N,L)不能合起来代表P(L,M,N)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。第一个是,如x轴、y轴和z轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。n元谓词就是含有n个变量的布尔值函数。由于上述的n元关系定义了 (x1, ..., xn)属于R时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:许多事物有多个元素两两关系。例如:1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。
相关
- 泌尿系统泌尿系统(英语:Urinary system),有时也归类于排泄系统(英语:Excretory system)(Excretory system)的一部分,负责尿液的产生、运送、储存与排泄。人类的泌尿系统包括左右两颗肾脏、左右
- 关节病变关节病变(英语:arthropathy)是关节疾病的总称。若一个或多个关节发炎引起的关节病变称为关节炎,因此,任何关节的问题,不论是否发炎,均可称为“关节病变”。脊椎关节病变是一种影响
- 麻风病麻风病(英语:Leprosy),又作麻疯、癞病、疠风,医学领域称为汉生病或韩森氏病(英语:Hansen's Disease),是由麻风杆菌与弥漫型麻风分枝杆菌引起的一种慢性传染病,主要经由飞沫传染但传染
- 纯合纯合子(英语:homozygote),亦称同型合子,在遗传学上,二倍体生物的某个基因座上拥有相同的等位基因,而基因型和基因的表现型也是完全相同和对等。例如“AA”、“OO”。
- 睾酮睾酮(testosterone)(又称睾固酮、睾丸素、睾丸酮或睾甾酮、睾脂酮)是类固醇激素,由男性的睾丸或女性的卵巢分泌,肾上腺亦分泌少量睾酮。睾酮是主要的雌雄激素及蛋白同化甾类。不论
- 地理可视化地理可视化是指将地理空间数据分析并可视化的的一系列方法。就像是科学可视化和信息可视化 一样,地理可视化特别强调知识建构,而非在于知识记忆和信息传达。为了做到这个目标,
- 伤寒杆菌肠道沙门氏菌(学名:Salmonella enterica)是一种有鞭毛的革兰氏阴性菌及沙门氏菌属的一员。肠道沙门氏菌有着极其大量的血清型:大约有2000个不同的血清型。就如伤寒杆菌(学名Salmo
- 路得路得记(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey A
- 神经衰弱症神经衰弱是一个在20世纪初受当时的西方医学影响而传入中国的术语,用以表示人体神经实际上的机械性衰弱。其英语“Neurasthenia”在早至1829年就有使用,且它不是后来的神经病学
- 甲状舌骨外侧韧带甲状舌骨外侧韧带(lateral thyrohyoid ligament、lateral hyothyroid ligament)是一种圆形弹性韧带,形成甲状舌骨膜的后缘,并通过甲状软骨的上角尖端及舌骨的大角的末端。喉上神
