首页 >
关系
✍ dations ◷ 2025-11-26 07:30:26 #关系
在数学上,关系是对如等于 =或序<等二元关系的广义化。参考一个如“X认为Y喜欢Z”之类的关系,其实际情形如下:上表的每一行都代表着一个事实,并给出“X认为Y喜欢Z”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合P上的关系S,其中:包括表中所有的人物。表中的资料则等同于如下的有序对:若较不严谨些,通常会将S(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系S为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。k元关系在数学上有两种常见的定义。定义1在集合X1,…,Xk上的关系L是指集合的笛卡儿积的子集,写成L ⊆ X1 ×…× Xk。因此,在此定义下,k元关系就是个k元组的集合。第二个定义用到数学上一个常见的习惯-说“某某为一n元组”即表示此一某某数学物件是由n组数学物件的描述来判定的。在于集合k上的关系L中,会有k+1件事要描述,即k个集合加上一个这些集合笛卡儿积的子集。在此习惯下,L可以说是一个k+1元组。定义2在集合X1,…,Xk上的关系L是一个k+1元组L = (X1,…, Xk, G(L)),其中G(L)是笛卡儿积X1 ×…× Xk的子集,称之为L的“关系图”。两个正整数n和m之间“可除性”的关系是指“n 整除m”。此一关系通常用一特殊的符号“ | ”来表示它,写成“n|m”来表示“n整除m”。若要以集合来代表这二元关系,即是设正整数的集合P = {1,2,3,…},然后可除性就是一个在P上的二元关系D,其中D为一包含了所有n|m的有序对 (n,m)。例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或D(2,4)和D(6,72)。对三维空间内的线L,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。换句话说,若 P(L,M,N)表示线 L,M,N共面,且Q(L,M)表示线 L,M共面,则Q(L,M),Q(M,N)和Q(N,L)不能合起来代表P(L,M,N)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。第一个是,如x轴、y轴和z轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。n元谓词就是含有n个变量的布尔值函数。由于上述的n元关系定义了 (x1, ..., xn)属于R时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:许多事物有多个元素两两关系。例如:1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。
相关
- 器官移植人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学器官移植(德语:Organtransplantation,英
- 条目肺炎(pneumonia),是指肺部出现发炎的症状,主要是肺泡受到影响。肺炎常见的症状包括有痰的咳嗽、胸痛、发热及呼吸困难。症状可能由轻微到严重不一。特别高龄的长者或新生儿可能
- 瘟疫瘟疫,指大型且具有传染力又会造成死亡的流行病,在广大区域或全球多处传染人或其他物种。现代医学卫生发达,许多会造成大量死亡的瘟疫都有效控制为流行病等级。根据世界卫生组织
- 干燥症干燥综合征,又名修格连氏综合征,或者舍格伦综合征。该病的英文名称为Sjögren's syndrome(发音为/ˈʃoʊɡrənz/,又称为Mikulicz disease及Sicca syndrome,是一种长期的自身免
- 斜睾目见内文斜睾目(学名:Plagiorchiida)是吸虫纲复殖亚纲之下两个目之一。本目原来只是复殖亚纲之下五个目之一,但后来这些目现时大多成为了斜睾目之下的亚目。以下为部分本目的科:引
- 巴库巴库(阿塞拜疆语:Bakı;IPA: .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","G
- 巴格达巴格达(阿拉伯语:بغداد,阿拉米语:ܒܓܕܐܕ),古称报达,伊拉克首都,同时它也是伊拉克巴格达省的首府,为伊拉克最大城市及经济文化中心。位于美索不达米亚平原中部地区,底格里斯
- 临床研究临床研究(Clinical research)是医疗科学的分支,确认药物、医疗设备、诊断及治疗的安全性及效能,这可以用来预防、治疗、诊断或是缓解疾病中的症状。临床研究和临床实践(clinical
- 放射线治疗放射治疗(英语:Radiation therapy)或简称电疗,是使用电离辐射作为治疗疾病的方式。与放射治疗有关的医学专业称为放射肿瘤学或放射治疗学。执行这个专业的医疗从业人员称为放射
- 落枕颈部僵硬(英文:Neck Stiffness),又名落枕(“落”,拼音:lào,中医学病名)、失枕、瞓捩颈,西医上称作急性颈椎关节周围炎(Acute fibrositis)或颈部肌肉扭伤,伤者会感到头部转动困难,轻微扭动
