关系

✍ dations ◷ 2025-11-24 13:45:21 #关系
在数学上,关系是对如等于 =或序<等二元关系的广义化。参考一个如“X认为Y喜欢Z”之类的关系,其实际情形如下:上表的每一行都代表着一个事实,并给出“X认为Y喜欢Z”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合P上的关系S,其中:包括表中所有的人物。表中的资料则等同于如下的有序对:若较不严谨些,通常会将S(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系S为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。k元关系在数学上有两种常见的定义。定义1在集合X1,…,Xk上的关系L是指集合的笛卡儿积的子集,写成L ⊆ X1 ×…× Xk。因此,在此定义下,k元关系就是个k元组的集合。第二个定义用到数学上一个常见的习惯-说“某某为一n元组”即表示此一某某数学物件是由n组数学物件的描述来判定的。在于集合k上的关系L中,会有k+1件事要描述,即k个集合加上一个这些集合笛卡儿积的子集。在此习惯下,L可以说是一个k+1元组。定义2在集合X1,…,Xk上的关系L是一个k+1元组L = (X1,…, Xk, G(L)),其中G(L)是笛卡儿积X1 ×…× Xk的子集,称之为L的“关系图”。两个正整数n和m之间“可除性”的关系是指“n 整除m”。此一关系通常用一特殊的符号“ | ”来表示它,写成“n|m”来表示“n整除m”。若要以集合来代表这二元关系,即是设正整数的集合P = {1,2,3,…},然后可除性就是一个在P上的二元关系D,其中D为一包含了所有n|m的有序对 (n,m)。例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或D(2,4)和D(6,72)。对三维空间内的线L,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。换句话说,若 P(L,M,N)表示线 L,M,N共面,且Q(L,M)表示线 L,M共面,则Q(L,M),Q(M,N)和Q(N,L)不能合起来代表P(L,M,N)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。第一个是,如x轴、y轴和z轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。n元谓词就是含有n个变量的布尔值函数。由于上述的n元关系定义了 (x1, ..., xn)属于R时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:许多事物有多个元素两两关系。例如:1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。

相关

  • 硬皮病硬皮病(英语:Scleroderma),也称系统性硬化症,是一种以局限性或弥漫性皮肤增厚和纤维化为特征的全身性自体免疫病。病变特点为皮肤纤维增生及血管洋葱皮样改变,最终导致皮肤硬化、
  • 系统生物学系统生物学(Systems biology),是一个试图整合不同层次信息以理解生物系统如何行使功能的学术领域。通过研究某生物系统各不同部分之间的相互关系和相互作用(例如,与细胞信号传送
  • 勃起功能障碍勃起功能障碍(Erectile dysfunction,缩写:ED),为男性性功能障碍的一种,其特征在于阴茎在性行为期间无法勃起或维持勃起:538-39。勃起功能障碍可能会产生心理上的后果,因为它与关系
  • 组织细胞增生症医学中,组织细胞增生(英语:Histiocytosis)是指组织细胞(英语:histiocyte)(组织巨噬细胞)之过量存在;组织细胞增多症或组织细胞增生症常被用来指代一系列以此为特征的罕见病。偶见以此
  • 锁骨锁骨 (英文:Clavicle;拉丁文:Clavicula)是爬行动物、鸟类和哺乳类动物肩胛带三骨之一。硬骨鱼身上已经有其痕迹,但两栖动物却没有锁骨。除了锁骨,还有喙状骨和肩胛骨,共同组成肩胛带
  • 计算机动画计算机动画(Computer Animation),又称计算机绘图,是通过使用计算机制作动画的技术。它是计算机图形学和动画的子领域。近年动画师越来越多的借助于三维计算机图形学,纵使二维计算
  • 巴拿马市巴拿马城(西班牙语:Panamá)是中美洲国家巴拿马的首都。它位于巴拿马运河太平洋端的入口,拥有880,691人口,而都市圈更有1,272,672人口居住,而该城亦是巴拿马的政治、行政及文化中
  • 我思故我在“我想,所以我是”,旧译“我思故我在”(拉丁语:Cogito, ergo sum;法语:Je pense, donc je suis)是法国哲学家笛卡尔的哲学命题,又称为“笛卡尔的cogito”。印欧语系中,很多语言的系词
  • HLA-A2XPG, 3RL1, 3RL2· plasma membrane · integral to plasma membrane · ER to Golgi transport vesicle membrane · integral to membrane · phagocytic vesicle me
  • 词尾后缀(英语:suffix),又称字尾或词尾,在词汇学的定义中表示一种后置于其他词素后的词缀。以英语为例:establish(动词)+ -ment(后缀)→establishment(名词):借由后缀-ment的使用,使原本的动词