关系

✍ dations ◷ 2024-12-22 19:20:21 #关系
在数学上,关系是对如等于 =或序<等二元关系的广义化。参考一个如“X认为Y喜欢Z”之类的关系,其实际情形如下:上表的每一行都代表着一个事实,并给出“X认为Y喜欢Z”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合P上的关系S,其中:包括表中所有的人物。表中的资料则等同于如下的有序对:若较不严谨些,通常会将S(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系S为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。k元关系在数学上有两种常见的定义。定义1在集合X1,…,Xk上的关系L是指集合的笛卡儿积的子集,写成L ⊆ X1 ×…× Xk。因此,在此定义下,k元关系就是个k元组的集合。第二个定义用到数学上一个常见的习惯-说“某某为一n元组”即表示此一某某数学物件是由n组数学物件的描述来判定的。在于集合k上的关系L中,会有k+1件事要描述,即k个集合加上一个这些集合笛卡儿积的子集。在此习惯下,L可以说是一个k+1元组。定义2在集合X1,…,Xk上的关系L是一个k+1元组L = (X1,…, Xk, G(L)),其中G(L)是笛卡儿积X1 ×…× Xk的子集,称之为L的“关系图”。两个正整数n和m之间“可除性”的关系是指“n 整除m”。此一关系通常用一特殊的符号“ | ”来表示它,写成“n|m”来表示“n整除m”。若要以集合来代表这二元关系,即是设正整数的集合P = {1,2,3,…},然后可除性就是一个在P上的二元关系D,其中D为一包含了所有n|m的有序对 (n,m)。例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或D(2,4)和D(6,72)。对三维空间内的线L,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。换句话说,若 P(L,M,N)表示线 L,M,N共面,且Q(L,M)表示线 L,M共面,则Q(L,M),Q(M,N)和Q(N,L)不能合起来代表P(L,M,N)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。第一个是,如x轴、y轴和z轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。n元谓词就是含有n个变量的布尔值函数。由于上述的n元关系定义了 (x1, ..., xn)属于R时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:许多事物有多个元素两两关系。例如:1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。

相关

  • 费雯丽奥利维尔爵士夫人费雯·丽(英语:Vivien Leigh, Lady Olivier,1913年11月5日-1967年7月8日),英国国宝级电影演员,两届奥斯卡影后。费雯·丽不但是一位出色的电影演员,也是一名优秀的
  • 糖皮质激素可治疗性醛固酮增多症糖皮质类固醇可抑制性醛固酮增多症(glucocorticoid remediable aldosteronism,GRA),又名地塞米松可抑制性醛固酮增多症(dexamethasone-suppressible hyperaldosteronism,DSH)或ACTH
  • 脊索动物门脊索动物门(学名:Chordata)是指有脊索,或其在演化过程退化而被脊椎取代的动物。是动物界生态位最顶级的门。少数学者提出将半索动物门也置于脊索动物门下,并命名为口索动物亚门。
  • 胎位胎位(position)是产科学名词,是指胎儿在子宫中的姿势,会以胎儿在分娩之前,距母亲骨盆较近的部分(先露部位(英语:presentation (obstetrics)))为准,主要分为头部较接近母亲骨盆的头先露(
  • 基纳省基纳省(阿拉伯语:محافظة قنا‎),是埃及二十九省之一,位于埃及南部,首府为基纳。尼罗河贯穿本省。面积1,796平方公里,人口1,092,316人(2006年统计)。2009年12月7日,卢克索省自
  • 子宫颈抹片检查巴氏涂片检查(英语:Papanicolaou test,简称Pap test),在港澳地区称为柏氏抹片检查,是一种子宫颈医学诊断方法,用于检查子宫颈癌等疾病。巴氏涂片检查的方式是,首先取得少量子宫颈细
  • 毒蝇鹅膏菌毒蝇伞(学名:Amanita muscaria)又称毒蝇鹅膏菌,为一种含神经性毒害的担子菌门真菌,分类上为鹅膏菌科鹅膏菌属的物种。毒蝇伞的生长环境遍及北半球温带和极地地区,且也无意间拓展到
  • 污染物排放控制技术污染物排放控制基本从三个方面开发:第一种方法是目前最常用的方法,但需要投入并没有经济效益,采取这种方法肯定会增加生产成本,降低产品竞争力,一般污染物排放单位不会自动处理,必
  • 颈椎病脊椎关节退化(英语:Spondylosis)又称退化性脊椎炎,是由于脊椎椎间盘退化性病变、骨质增生所引起的一系列临床症状的症候群,是脊椎疾病(英语:Spinal disease)的一种。在颈椎段则称为
  • 俄罗斯俄罗斯国家图书馆位于俄罗斯圣彼得堡涅瓦大街,紧邻奥斯特罗夫斯基广场。至今已经有218年的历史,是俄罗斯帝国最古老的公共图书馆。目前是俄罗斯第二大图书馆(仅次于位于莫斯科