首页 >
关系
✍ dations ◷ 2025-11-05 23:39:36 #关系
在数学上,关系是对如等于 =或序<等二元关系的广义化。参考一个如“X认为Y喜欢Z”之类的关系,其实际情形如下:上表的每一行都代表着一个事实,并给出“X认为Y喜欢Z”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合P上的关系S,其中:包括表中所有的人物。表中的资料则等同于如下的有序对:若较不严谨些,通常会将S(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系S为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。k元关系在数学上有两种常见的定义。定义1在集合X1,…,Xk上的关系L是指集合的笛卡儿积的子集,写成L ⊆ X1 ×…× Xk。因此,在此定义下,k元关系就是个k元组的集合。第二个定义用到数学上一个常见的习惯-说“某某为一n元组”即表示此一某某数学物件是由n组数学物件的描述来判定的。在于集合k上的关系L中,会有k+1件事要描述,即k个集合加上一个这些集合笛卡儿积的子集。在此习惯下,L可以说是一个k+1元组。定义2在集合X1,…,Xk上的关系L是一个k+1元组L = (X1,…, Xk, G(L)),其中G(L)是笛卡儿积X1 ×…× Xk的子集,称之为L的“关系图”。两个正整数n和m之间“可除性”的关系是指“n 整除m”。此一关系通常用一特殊的符号“ | ”来表示它,写成“n|m”来表示“n整除m”。若要以集合来代表这二元关系,即是设正整数的集合P = {1,2,3,…},然后可除性就是一个在P上的二元关系D,其中D为一包含了所有n|m的有序对 (n,m)。例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或D(2,4)和D(6,72)。对三维空间内的线L,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。换句话说,若 P(L,M,N)表示线 L,M,N共面,且Q(L,M)表示线 L,M共面,则Q(L,M),Q(M,N)和Q(N,L)不能合起来代表P(L,M,N)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。第一个是,如x轴、y轴和z轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。n元谓词就是含有n个变量的布尔值函数。由于上述的n元关系定义了 (x1, ..., xn)属于R时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:许多事物有多个元素两两关系。例如:1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。
相关
- 钾4s12,8,8,1蒸气压第一:418.8 kJ·mol−1 第二:3052 kJ·mol−1 第三:4420 kJ·mol−1 (主条目:钾的同位素钾(拉丁语:Kalium,化学符号:K)是原子序数为19的化学元素。最早于植物的灰烬
- 复制复制(英文:Copying;中文音译:拷贝)是将某事物通过某种方式制作成相同的一份或多份的行为。在中文里,台湾和港澳地区亦将英文中表示利用生物技术由无性生殖产生与原个体有完全相同
- 腱鞘炎腱鞘炎又称肌腱滑膜炎(英语:Tenosynovitis),指腱鞘发炎,常造成关节疼痛、肿胀、关节活动受限。可以是感染性或非感染性,常见的非感染性腱鞘炎有狄奎凡氏症和板机指。所有手部感染
- 领土变迁美国领土变迁(英语:Territorial evolution of the United States)列出美国领土内外边界的变更,以及地位和名称的变化。领土地图上也包括最终成为美国一部分的周边地区。并附有地
- 前臂前臂指的是靠近手的部分。医护人员在对人体进行健康检查时,通常都是从前臂开始找血管打针的。人的左右手都有前臂。另外,前臂也常用在比腕力上,腕力的力量几乎都是从前臂开始出
- 日本环境省环境省(日语:環境省/かんきょうしょう,英语:Ministry of the Environment)是日本中央省厅之一。负责地球环境保全、防止公害、废弃物对策、自然环境的保护及整备环境。以下是各部
- 白蛋白尿白蛋白尿(Albuminuria)是一种病理状态,其中血清白蛋白是存在于尿中。它是蛋白尿的类型之一。尿液呈现浓厚的白色泡沫。蛋白质的量丢失在尿液里可以通过24小时尿液采集的量化
- 秋水仙素秋水仙素(英语:Colchicine)是最初萃取于百合科植物秋水仙的种子和球茎的一种植物碱。它是白色或淡黄色的粉末或针状晶体,有剧毒。最先用于治愈风湿病和痛风,但是它的泻药及促进呕
- 基底细胞癌基底细胞癌(Basal-cell carcinoma,BCC)或称基底细胞瘤,是最常见的皮肤癌症(英语:skin cancer)。患者的皮肤通常会先长出一块无痛的隆起部分,其上可能布有具光泽的蛛网纹或是溃疡。
- 泰卢固语泰卢固语(తెలుగు)是印度安得拉邦的官方语言,属于达罗毗荼语系,是印度六大传统语言之一。泰卢固语是印度安得拉邦泰卢固人的语言,印度宪法承认的语言之一。属达罗毗荼语系中
