首页 >
关系
✍ dations ◷ 2025-10-22 21:56:01 #关系
在数学上,关系是对如等于 =或序<等二元关系的广义化。参考一个如“X认为Y喜欢Z”之类的关系,其实际情形如下:上表的每一行都代表着一个事实,并给出“X认为Y喜欢Z”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合P上的关系S,其中:包括表中所有的人物。表中的资料则等同于如下的有序对:若较不严谨些,通常会将S(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系S为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。k元关系在数学上有两种常见的定义。定义1在集合X1,…,Xk上的关系L是指集合的笛卡儿积的子集,写成L ⊆ X1 ×…× Xk。因此,在此定义下,k元关系就是个k元组的集合。第二个定义用到数学上一个常见的习惯-说“某某为一n元组”即表示此一某某数学物件是由n组数学物件的描述来判定的。在于集合k上的关系L中,会有k+1件事要描述,即k个集合加上一个这些集合笛卡儿积的子集。在此习惯下,L可以说是一个k+1元组。定义2在集合X1,…,Xk上的关系L是一个k+1元组L = (X1,…, Xk, G(L)),其中G(L)是笛卡儿积X1 ×…× Xk的子集,称之为L的“关系图”。两个正整数n和m之间“可除性”的关系是指“n 整除m”。此一关系通常用一特殊的符号“ | ”来表示它,写成“n|m”来表示“n整除m”。若要以集合来代表这二元关系,即是设正整数的集合P = {1,2,3,…},然后可除性就是一个在P上的二元关系D,其中D为一包含了所有n|m的有序对 (n,m)。例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或D(2,4)和D(6,72)。对三维空间内的线L,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。换句话说,若 P(L,M,N)表示线 L,M,N共面,且Q(L,M)表示线 L,M共面,则Q(L,M),Q(M,N)和Q(N,L)不能合起来代表P(L,M,N)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。第一个是,如x轴、y轴和z轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。n元谓词就是含有n个变量的布尔值函数。由于上述的n元关系定义了 (x1, ..., xn)属于R时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:许多事物有多个元素两两关系。例如:1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。
相关
- 局灶节段性肾小球硬化症局灶节段性肾小球硬化症(focal segmental glomerulosclerosis、FSGS、局灶节段性肾丝球硬化症)是小孩和青少年肾病综合征的原因,以及成年人肾功能衰竭的重要原因。 它也被称为"
- 骨膜炎骨膜炎是指因骨膜发炎而引起的病症。骨膜是骨头周围的一层结缔组织。骨膜炎通常是一种慢性疾病,伴有疼痛和肿胀。初次参加运动或运动量猛增的锻炼者,容易发生疲劳性骨膜炎。
- 头孢他美(英文:Cefetamet)头孢他美也称为“头孢米特”,是一种第三代头孢菌素。该抗生素以7-ADCA为原料合成,常以盐酸头孢他美酯(安塞他美)的形式生产。头孢他美对革兰氏阳性菌及革兰氏阴
- 国立自然科学博物馆国立自然科学博物馆,简称科博馆,是位于台湾台中市北区的公立科学博物馆,是中华民国国家十二项建设文化建设项下兴建的首座科学博物馆。该馆馆区由科学中心、太空剧场、生命科学
- 氯化锌氯化锌(ZnCl2)是氯和锌的化合物,该名称亦用来称呼它的水合物。无色或白色,有极强的水溶性和吸湿性,甚至会潮解,应在干燥处密封储存,避免与空气中的水蒸气接触。在纺织加工、焊接、
- 昂丹司琼昂丹司琼(Ondansetron),常见商品名 Zofran,是一种用于减少手术、化疗、放射治疗后,恶心呕吐的药物。亦可用于治疗肠胃炎。但对于动晕症几乎无治疗效果。本品可经口服给药,也可以肌
- 新政联盟新政联盟(The New Deal coalition)是指支持罗斯福新政的利益群体和投票者的美国政党联盟,他们支持罗斯福新政,并使民主党主宰总统大选直至1960年代,仅在1952年和1956年输掉大选。
- 兄弟战争《Brothers Conflict》(ブラザーズ コンフリクト),是由叶濑敦子企划、水野隆志编写的日本多媒体作品,原作为小说形式于杂志电击SYLPH连载,并改编为游戏及2013年7月2日开始播放的
- 闭合音塞音(汉语拼音:sè yīn;注音:ㄙㄜˋㄧㄣ ;英文:Plosive 或 Stop 或 Occlusive),也称爆破音、闭塞音、塞爆音。塞音为一种辅音,借由阻塞声道使所有气流停止。依照辅音发音三阶段,成阻
- 耶基斯语耶基斯语(Yerkish,Lexigram、符号字)是一种为了非人类灵长目(黑猩猩)与人类沟通、所发展出的人工语言。耶基斯语需要灵长目黑猩猩使用键盘按键的方法、即谓“符号字”输入法来进