关系

✍ dations ◷ 2025-11-29 15:47:48 #关系
在数学上,关系是对如等于 =或序<等二元关系的广义化。参考一个如“X认为Y喜欢Z”之类的关系,其实际情形如下:上表的每一行都代表着一个事实,并给出“X认为Y喜欢Z”此类形式的断言。例如,第一行即表示“韵如认为凯文喜欢佳馨”。上表表示一个在集合P上的关系S,其中:包括表中所有的人物。表中的资料则等同于如下的有序对:若较不严谨些,通常会将S(韵如,凯文,佳馨)用来指上表中第一行的同一种关系。关系S为“三元”关系,因为每一行都包含了“三个”项目。关系是一个以集合论中的概念定义出的数学物件(即关系为{X,Y,Z}的笛卡儿积的子集),包含了表中所有的讯息。因此,数学上来说,关系纯粹是个集合。k元关系在数学上有两种常见的定义。定义1在集合X1,…,Xk上的关系L是指集合的笛卡儿积的子集,写成L ⊆ X1 ×…× Xk。因此,在此定义下,k元关系就是个k元组的集合。第二个定义用到数学上一个常见的习惯-说“某某为一n元组”即表示此一某某数学物件是由n组数学物件的描述来判定的。在于集合k上的关系L中,会有k+1件事要描述,即k个集合加上一个这些集合笛卡儿积的子集。在此习惯下,L可以说是一个k+1元组。定义2在集合X1,…,Xk上的关系L是一个k+1元组L = (X1,…, Xk, G(L)),其中G(L)是笛卡儿积X1 ×…× Xk的子集,称之为L的“关系图”。两个正整数n和m之间“可除性”的关系是指“n 整除m”。此一关系通常用一特殊的符号“ | ”来表示它,写成“n|m”来表示“n整除m”。若要以集合来代表这二元关系,即是设正整数的集合P = {1,2,3,…},然后可除性就是一个在P上的二元关系D,其中D为一包含了所有n|m的有序对 (n,m)。例如,2为4的因数及6为72的因数,则可写成2|4和6|72,或D(2,4)和D(6,72)。对三维空间内的线L,存在一个三条线为共面的三元关系。此一关系“无法”缩减成两条线共面的二元对称关系。换句话说,若 P(L,M,N)表示线 L,M,N共面,且Q(L,M)表示线 L,M共面,则Q(L,M),Q(M,N)和Q(N,L)不能合起来代表P(L,M,N)也是对的;但相反则是正确的(三条共面的线之中的一对必然也会是共面的)。其中有两个几何上的反例。第一个是,如x轴、y轴和z轴之类共点(即交于同一点)的三条线。另一个则是在任一三角柱上平行的三边。若要正确,则必须加上每对线都会相交且相交的点都不同。如此一来,每对线的共面才会意指三条线的共面。数学上更有研究意义的是具有某种性质的关系。一些常见的性质包括:自反性、反自反性、对称性、反对称性、传递性。确定一个关系是否具有这些性质,可以通过考察它的关系图或者是关系矩阵来做到。具有自反性、对称性、传递性的关系称作等价关系。一个常见的例子就是整数的模同余。具有自反性、反对称性、传递性的关系称作偏序关系。例如自然数集上的大于等于就是偏序关系。n元谓词就是含有n个变量的布尔值函数。由于上述的n元关系定义了 (x1, ..., xn)属于R时唯一的n元谓词(反之亦然),关系和谓词通常使用相同的符号。所以下列两种写法一般认为是等价的:许多事物有多个元素两两关系。例如:1,无穷个素数都是两两互素。例如素数2,3,5,7,11,就是所有素数之间没有公共因数,我们知道有无穷的素数两两互素;2,无穷个区域两两相连。例如,一个汽车轮胎形状的环面可以有7个区域两两相连,有两个洞的曲面可以有8个区域两两相连,有三个洞的曲面可以有9个区域两两相连,...。我们知道可以构造无穷的区域两两相连。

相关

  • 炎症炎症反应、炎性反应,俗称炎症,是指具有血管系统的活体组织对致炎因子及局部损伤所发生的防御性为主的反应,中心环节是血管反应,是生物组织受到外伤、出血或病原感染等刺激,激发的
  • 香烟品牌列表这是一个香烟品牌的列表:
  • 碘苷碘苷(INN:idoxuridine)是一种主要用于角膜炎的抗疱疹病毒科抗病毒药物。碘苷与脱氧尿苷的结构非常类似,可以在病毒DNA复制的过程中被使用,碘苷当中的碘原子妨碍了碱基对的生成,从
  • 理想气体状态方程在热力学里,描述理想气体宏观物理行为的状态方程称为理想气体状态方程(ideal gas equation of state)。理想气体定律表明,理想气体状态方程为(pp509-512)其中,
  • 绿藻门绿藻门(学名:Chlorophyta)是植物中的一门,包含有约8000个物种。和陆生植物 (苔藓植物和维管植物)一样,绿藻也含有叶绿素 a 和 c ,且将能源转化为淀粉存在其色素体内。绿藻门和轮藻门
  • 时间轴直至2018年4月,联合国核准及部署了71个维和行动,并不包括如朝鲜战争、波斯湾战争等在联合国核准底下进行的军事介入行动。在联合国宪章中赋予联合国安全理事会的权力和责任,要
  • 后述心电图(Electrocardiography、ECG 或者 EKG)是一种经胸腔的以时间为单位记录心脏的电生理活动,并通过皮肤上的电极捕捉并记录下来的诊疗技术。这是一种无创性的记录方式。Elect
  • 中央静脉导管深静脉血栓是在深静脉形成的血栓,常形成于下肢或骨盆部位深处的静脉。有时也形成于上肢的静脉(这被称为Paget-Schrötter综合症(英语:Paget–Schroetter disease))。近期接受外科
  • 张纲张纲可以是下列人物:
  • 血液循环共振理论血液循环共振理论是一种关于人体血液循环的理论,由以台湾中央研究院物理所的王唯工教授(Wei-Kung Wang)为首等人所提出,认为此理论补足并解释了一些现代循环生理学(circular p