独立 (概率论)

✍ dations ◷ 2025-04-25 04:23:52 #概率论

在概率论里,说两个事件是独立的,直觉上是指一次实验中一事件的发生不会影响到另一事件发生的概率。例如,在一般情况下可以认为连续两次掷骰子得到的点数结果是相互独立的。类似地,两个随机变量是独立的,若其在一事件给定观测量的条件概率分布和另一事件没有被观测的概率分布是一样的。

标准的定义为:

这里, ∩ 是和的交集,即为和两个事件都会发生的事件。

更一般地,任意个事件都是互相独立的当且仅当对其任一有限子集1, ..., ,会有

或写作: Pr ( i = 1 n A i ) = i = 1 n Pr ( A i ) . {\displaystyle \Pr \left(\bigcap _{i=1}^{n}A_{i}\right)=\prod _{i=1}^{n}\Pr(A_{i}).\!\,}

若两个事件和是独立的,则其给之的条件概率和的“无条件概率”一样,即

至少有两个理由可以解释为何此一叙述不可以当做独立性的定义:(1)和两个事件在此叙述中并不对称,及(2)当概率为0亦可包含于此叙述时,会有问题产生。

若回想条件概率Pr( | )的定义为

则上面的叙述则会等价于

即为上面所给定的标准定义。

注意独立性并不和它在地方话里的有相同的意思。例如,一事件独立于其自身当且仅当

亦即,其概率不是零就是一。因此,当一事件或其补集几乎确定会发生,它即是独立于其本身。例如,若事件从单位区间的连续型均匀分布上选了0.5,则是独立于其自身的,尽管重言式地,完全决定了。

上面所定义的是的独立性。在这一节中,我们将处理随机变量的独立性。若是一实数值随机变量且是一数字的话,则 ≤ 的事件是一个事件,所以可以有意义地说它是否会独立于其他的事件。

两个随机变量和是独立的当且仅当对任何数字和,事件(小于或等于的事件)和为如上面所定义的独立事件。类似地,随意数量的随机变量是明确地独立的,若对任一有限子集1, ..., 和任一数字的有限子集1, ..., ,其事件, ..., 会是如上面所定义的独立事件。

其量测可以由事件来取代上面所定义的事件,其中为任一包络集合。此一定义完全和上述其随机变量的值为实数的定义等价。且他有着可以作用于复值随机变量和在任一拓扑空间中取值之随机变量上的优点。

即使任意数目中的任二个随机变量都是独立的,但它们可能仍旧会无法互相独立;这种的独立被称为两两独立。

若和是独立的,则其期望值会有下列的好性质:E = E E,(假定都存在)且其方差(若存在)满足

因为其协方差 cov(,) 为零。(其逆命题不成立,即若两个随机变量的协方差为0,它们不一定独立。)

此外,具有分布函数() 及 ()和概率密度() 及 ()的随机变量和为独立的,当且仅当其相结合的随机变量(,)有一共同分布

或等价地,有一共同密度

类似的表示式亦可以用来两个以上的随机变量上。

直觉地,两个随机变量和给定条件独立,如果:一旦知道了,从的值便不能得出任何关于的信息。例如,相同的数量的两个测量和不是独立的,但它们是给定条件独立(除非两个测量的误差是有关联的)。

条件独立的正式定义是基于条件分布的想法。如果、和是离散型随机变量,那么我们定义和给定条件独立,如果对于所有使 P ( Z z ) > 0 {\displaystyle \mathrm {P} (Z\leq z)>0} 、和,都有:

另一方面,如果随机变量是连续的,且具有联合概率密度,那么和给定条件独立,如果对于所有使 p Z ( z ) > 0 {\displaystyle p_{Z}(z)>0} 、和,都有:

如果和给定条件独立,那么对于任何满足 P ( Z = z ) > 0 {\displaystyle \mathrm {P} (Z=z)>0} 、和,都有:

也就是说,给定和的条件分布,与仅仅给定的条件分布是相同的。对于连续的情况下的条件概率密度函数,也有一个类似的公式。

独立性可以视为条件独立的一个特例,因为概率可以视为不给定任何事件的条件概率。

相关

  • 多囊卵巢综合症多囊性卵巢综合症(Polycystic ovary syndrome,简称PCOS),又称斯-李二氏症(Stein-Leventhal syndrome),是一连串女性因为雄性激素上升所导致的症状。多囊性卵巢的症状包含月经不规律
  • 视黄醇结合蛋白质视黄醇结合蛋白质(英语:Retinol-binding protein,简称为RBP,又称为维甲醇结合蛋白质)是一具有多种功能的蛋白质家族,是结合了视黄醇的载体蛋白。对视黄醇结合蛋白质的评估在关于健
  • 社会阶级实证主义 · 反实证主义(英语:Antipositivism) 结构主义 · 冲突理论 中层理论 · 形式理论 批判理论人口 · 团体 · 组织(英语:Organizational theory) · 社会化 社会性
  • 马克·安德森马克·洛厄尔·安德森(英语:Marc Lowell Andreessen,1971年7月9日-),美国企业家、投资者、软件工程师。他是著名的Mosaic浏览器共同开发者,第一个被广泛使用的浏览器;网景通讯公司的
  • 意大利海军意大利海军是意大利共和国的海军部队,是意大利军队的四个分支之一,由前意大利王国的意大利皇家海军(Regia Marina)演变而来,形成于1946年。目前的意大利海军服役有3.7万名海军官
  • 核糖核苷酸还原酶核糖核苷酸还原酶 (英文:Ribonucleotide reductase.(RNR), 别称为 核糖核苷二磷酸还原酶) 他是一个酵素,功能为把核苷酸催化为脱氧核糖核苷酸. 脱氧核糖核苷酸常被使用于DNA
  • 不等式不等式是数学名词,是指表示二个量之间不等的叙述。一般常会表示成二个表示式表示要探讨的量,中间再加上不等关系的符号,表示两者的关系。以下是一些不等式的例子:有些作者认为不
  • 以色列据以色列中央统计局的资料显示,在以色列第63个建国日(2011年5月14日)之前,总人口达到7,746,000。而在建国初期,这一数字仅为806,000。 目前,犹太人约占75.3%(5,837,000),阿拉伯人占2
  • 运河博物馆坐标:22°59′54″N 120°09′50″E / 22.998405°N 120.163913°E / 22.998405; 120.163913运河博物馆位于台南市安平区、台南运河畔。2003年5月13日公告为市定古迹。该建筑
  • 非凡商业台非凡商业台,是非凡电视旗下的频道之一。2019年7月22日起,启用高清版本“非凡商业台HD”。