独立 (概率论)

✍ dations ◷ 2025-06-10 20:42:06 #概率论

在概率论里,说两个事件是独立的,直觉上是指一次实验中一事件的发生不会影响到另一事件发生的概率。例如,在一般情况下可以认为连续两次掷骰子得到的点数结果是相互独立的。类似地,两个随机变量是独立的,若其在一事件给定观测量的条件概率分布和另一事件没有被观测的概率分布是一样的。

标准的定义为:

这里, ∩ 是和的交集,即为和两个事件都会发生的事件。

更一般地,任意个事件都是互相独立的当且仅当对其任一有限子集1, ..., ,会有

或写作: Pr ( i = 1 n A i ) = i = 1 n Pr ( A i ) . {\displaystyle \Pr \left(\bigcap _{i=1}^{n}A_{i}\right)=\prod _{i=1}^{n}\Pr(A_{i}).\!\,}

若两个事件和是独立的,则其给之的条件概率和的“无条件概率”一样,即

至少有两个理由可以解释为何此一叙述不可以当做独立性的定义:(1)和两个事件在此叙述中并不对称,及(2)当概率为0亦可包含于此叙述时,会有问题产生。

若回想条件概率Pr( | )的定义为

则上面的叙述则会等价于

即为上面所给定的标准定义。

注意独立性并不和它在地方话里的有相同的意思。例如,一事件独立于其自身当且仅当

亦即,其概率不是零就是一。因此,当一事件或其补集几乎确定会发生,它即是独立于其本身。例如,若事件从单位区间的连续型均匀分布上选了0.5,则是独立于其自身的,尽管重言式地,完全决定了。

上面所定义的是的独立性。在这一节中,我们将处理随机变量的独立性。若是一实数值随机变量且是一数字的话,则 ≤ 的事件是一个事件,所以可以有意义地说它是否会独立于其他的事件。

两个随机变量和是独立的当且仅当对任何数字和,事件(小于或等于的事件)和为如上面所定义的独立事件。类似地,随意数量的随机变量是明确地独立的,若对任一有限子集1, ..., 和任一数字的有限子集1, ..., ,其事件, ..., 会是如上面所定义的独立事件。

其量测可以由事件来取代上面所定义的事件,其中为任一包络集合。此一定义完全和上述其随机变量的值为实数的定义等价。且他有着可以作用于复值随机变量和在任一拓扑空间中取值之随机变量上的优点。

即使任意数目中的任二个随机变量都是独立的,但它们可能仍旧会无法互相独立;这种的独立被称为两两独立。

若和是独立的,则其期望值会有下列的好性质:E = E E,(假定都存在)且其方差(若存在)满足

因为其协方差 cov(,) 为零。(其逆命题不成立,即若两个随机变量的协方差为0,它们不一定独立。)

此外,具有分布函数() 及 ()和概率密度() 及 ()的随机变量和为独立的,当且仅当其相结合的随机变量(,)有一共同分布

或等价地,有一共同密度

类似的表示式亦可以用来两个以上的随机变量上。

直觉地,两个随机变量和给定条件独立,如果:一旦知道了,从的值便不能得出任何关于的信息。例如,相同的数量的两个测量和不是独立的,但它们是给定条件独立(除非两个测量的误差是有关联的)。

条件独立的正式定义是基于条件分布的想法。如果、和是离散型随机变量,那么我们定义和给定条件独立,如果对于所有使 P ( Z z ) > 0 {\displaystyle \mathrm {P} (Z\leq z)>0} 、和,都有:

另一方面,如果随机变量是连续的,且具有联合概率密度,那么和给定条件独立,如果对于所有使 p Z ( z ) > 0 {\displaystyle p_{Z}(z)>0} 、和,都有:

如果和给定条件独立,那么对于任何满足 P ( Z = z ) > 0 {\displaystyle \mathrm {P} (Z=z)>0} 、和,都有:

也就是说,给定和的条件分布,与仅仅给定的条件分布是相同的。对于连续的情况下的条件概率密度函数,也有一个类似的公式。

独立性可以视为条件独立的一个特例,因为概率可以视为不给定任何事件的条件概率。

相关

  • 降神会降神会(法语:Séance,英语:seance)是一种和死者沟通的尝试。降神会的主持者是灵媒。通常是灵媒似乎处于精神恍惚状态,并声称死者可以通过她和活人交流。最近一种众所周知的方式是
  • 华盛顿大学华盛顿大学(英语:University of Washington,缩写为UW),一所位于美国华盛顿州西雅图的公立研究型大学。创建于1861年,是美国西岸最古老的大学,也是美国西北部最大的大学。在1990年的
  • 爱德华·诺顿·劳仑次爱德华·诺顿·罗伦兹(英语:Edward Norton Lorenz,1917年5月23日-2008年4月16日),美国数学与气象学家。洛伦茨1917年出生于美国康乃迪克州西哈特福特(英语:West Hartford),大学时期同
  • 韩非子法家系列条目战国:李悝、吴起、慎到、申不害、   商鞅、李斯、韩非《韩非子》(公元前280年-公元前233年),又称《韩子》,是中国先秦时期法家代表思想家人物韩非的论著,为法家集大
  • 计算机断层扫描计算机断层成像(Computed Tomography,简称CT),是一种影像诊断学的检查。这一技术曾被称为计算机轴向断层成像(Computed Axial Tomography)。X射线计算机断层成像(X-Ray Computed To
  • 网络时间协定网络时间协议(英语:Network Time Protocol,缩写:NTP)是在数据网络潜伏时间可变的计算机系统之间通过分组交换进行时钟同步的一个网络协议,位于OSI模型的应用层。自1985年以来,NTP是
  • 卡罗卢斯·克卢修斯卡罗卢斯·克卢修斯(Carolus Clusius)(又名夏尔·德莱克吕兹Charles de l'Écluse)(1526年2月19日阿拉斯 – 1609年4月4日莱顿)植物学家。曾为维也纳的哈布斯堡家族的御医,也是植物
  • 多萝西·丹德里奇多萝西·丹德里奇(Dorothy Dandridge,1922年11月9日-1965年9月8日)是第一位入围奥斯卡最佳女主角奖的黑人女星和第一个登上生活杂志封面的黑人,以《卡门琼丝》一片走红,并且以她优
  • 青年黑杰克《青年黑杰克》(日语:ヤング ブラック・ジャック,英语:Young Black Jack)是手冢治虫原作、田畑由秋创作剧本、大熊由护绘画的日本漫画作品,手冢工作室负责协助、后藤伸正担任医学
  • 梁晓天梁晓天(1923年7月28日-2009年?),中国有机化学家。生于河南舞阳。1946年毕业于国立中央大学化学工程系。1952年获美国西雅图华盛顿大学博士学位。1980年当选为中国科学院学部委员