独立 (概率论)

✍ dations ◷ 2025-09-07 06:53:38 #概率论

在概率论里,说两个事件是独立的,直觉上是指一次实验中一事件的发生不会影响到另一事件发生的概率。例如,在一般情况下可以认为连续两次掷骰子得到的点数结果是相互独立的。类似地,两个随机变量是独立的,若其在一事件给定观测量的条件概率分布和另一事件没有被观测的概率分布是一样的。

标准的定义为:

这里, ∩ 是和的交集,即为和两个事件都会发生的事件。

更一般地,任意个事件都是互相独立的当且仅当对其任一有限子集1, ..., ,会有

或写作: Pr ( i = 1 n A i ) = i = 1 n Pr ( A i ) . {\displaystyle \Pr \left(\bigcap _{i=1}^{n}A_{i}\right)=\prod _{i=1}^{n}\Pr(A_{i}).\!\,}

若两个事件和是独立的,则其给之的条件概率和的“无条件概率”一样,即

至少有两个理由可以解释为何此一叙述不可以当做独立性的定义:(1)和两个事件在此叙述中并不对称,及(2)当概率为0亦可包含于此叙述时,会有问题产生。

若回想条件概率Pr( | )的定义为

则上面的叙述则会等价于

即为上面所给定的标准定义。

注意独立性并不和它在地方话里的有相同的意思。例如,一事件独立于其自身当且仅当

亦即,其概率不是零就是一。因此,当一事件或其补集几乎确定会发生,它即是独立于其本身。例如,若事件从单位区间的连续型均匀分布上选了0.5,则是独立于其自身的,尽管重言式地,完全决定了。

上面所定义的是的独立性。在这一节中,我们将处理随机变量的独立性。若是一实数值随机变量且是一数字的话,则 ≤ 的事件是一个事件,所以可以有意义地说它是否会独立于其他的事件。

两个随机变量和是独立的当且仅当对任何数字和,事件(小于或等于的事件)和为如上面所定义的独立事件。类似地,随意数量的随机变量是明确地独立的,若对任一有限子集1, ..., 和任一数字的有限子集1, ..., ,其事件, ..., 会是如上面所定义的独立事件。

其量测可以由事件来取代上面所定义的事件,其中为任一包络集合。此一定义完全和上述其随机变量的值为实数的定义等价。且他有着可以作用于复值随机变量和在任一拓扑空间中取值之随机变量上的优点。

即使任意数目中的任二个随机变量都是独立的,但它们可能仍旧会无法互相独立;这种的独立被称为两两独立。

若和是独立的,则其期望值会有下列的好性质:E = E E,(假定都存在)且其方差(若存在)满足

因为其协方差 cov(,) 为零。(其逆命题不成立,即若两个随机变量的协方差为0,它们不一定独立。)

此外,具有分布函数() 及 ()和概率密度() 及 ()的随机变量和为独立的,当且仅当其相结合的随机变量(,)有一共同分布

或等价地,有一共同密度

类似的表示式亦可以用来两个以上的随机变量上。

直觉地,两个随机变量和给定条件独立,如果:一旦知道了,从的值便不能得出任何关于的信息。例如,相同的数量的两个测量和不是独立的,但它们是给定条件独立(除非两个测量的误差是有关联的)。

条件独立的正式定义是基于条件分布的想法。如果、和是离散型随机变量,那么我们定义和给定条件独立,如果对于所有使 P ( Z z ) > 0 {\displaystyle \mathrm {P} (Z\leq z)>0} 、和,都有:

另一方面,如果随机变量是连续的,且具有联合概率密度,那么和给定条件独立,如果对于所有使 p Z ( z ) > 0 {\displaystyle p_{Z}(z)>0} 、和,都有:

如果和给定条件独立,那么对于任何满足 P ( Z = z ) > 0 {\displaystyle \mathrm {P} (Z=z)>0} 、和,都有:

也就是说,给定和的条件分布,与仅仅给定的条件分布是相同的。对于连续的情况下的条件概率密度函数,也有一个类似的公式。

独立性可以视为条件独立的一个特例,因为概率可以视为不给定任何事件的条件概率。

相关

  • 博拉-维托托语系博拉-维托托语系是一个分布于秘鲁东北部、哥伦比亚西南部和巴西西部的语系。博拉-维托托语系还可能包括以下语言:
  • 共有衍征共有衍征或共源性状,在演化生物学是一种两个或以上终端分类单元共有及从其最近共同祖先承袭的衍生性状状态。共有衍征是一种衍生而来的性状状态,并源自其后最共同祖先。假若有
  • 基隆路基隆路,为台湾台北市东侧的南北向主干道之一,由于连接数条市区干道及快速道路(如北端环东大道及堤顶大道;中段台5线(忠孝东路)、信义路、辛亥路的国道三甲、台9线(罗斯福路)及南端的
  • 印制电路板印刷电路板,又称印制电路板,印刷线路板,常用英文缩写PCB(Printed circuit board)或PWB(Printed wire board),是电子元件的支撑体,在这其中有金属导体作为连接电子元器件的线路。传统
  • 授权许可(英语:license)是为避免非法所采取的法律允许行为,亦可以指该允许行为的书面协议。当许可作为名词指称协议时,依然称许可,但实际情况会在其后添加条款或协议等词。许可人可以
  • 伯罗奔尼撒战争史《伯罗奔尼撒战争史》(古希腊语:Ἱστορία τοῦ Πελοποννησιακοῦ Πολέμου)是关于古希腊斯巴达领导的伯罗奔尼撒同盟与雅典领导的提洛同盟之间的
  • 书面挪威语书面挪威语(Bokmål),又称挪威博克莫尔语、挪威博克马尔语或巴克摩挪威语,是两种官方认可的挪威语之一,在挪威有约85%人士使用。1380年到1814年,挪威是丹麦王国的一部分,当时挪威的
  • 国际足联国际足球联合会(法语:Fédération Internationale de Football Association;英语:International Federation of Association Football),简称国际足联(FIFA),是管理英式足球、室内五
  • 朝鲜国防委员会委员长朝鲜民主主义人民共和国主题朝鲜民主主义人民共和国国务委员会委员长(朝鲜语:조선민주주의인민공화국 국무위원회 위원장/朝鮮民主主義人民共和國國务委員會委員長 Joseon min
  • 侯振挺侯振挺(1936年3月-),河南新密人,中国数学家,长期从事马尔可夫过程的研究,中南大学教授,全国劳动模范,第五、六、七、八届全国人大代表。1978年加入中国共产党。2017年获第十三届华罗