首页 >
电容率
✍ dations ◷ 2025-04-04 11:08:57 #电容率
在电磁学里,介电质响应外电场的施加而电极化的衡量,称为电容率。在非真空中由于介电质被电极化,在物质内部的总电场会减小。电容率关系到介电质传输(或容许)电场的能力。电容率衡量电场怎样影响介电质,怎样被介电质影响。电容率又称为“绝对电容率”,或称为“介电常数”。在国际单位制中,电容率的测量单位是法拉每米(F/m)。真空的电容率,称为真空电容率,或“真空介电常数”,标记为
ε
0
{displaystyle varepsilon _{0}}
。
ε
0
{displaystyle varepsilon _{0}}
≈8.854187817…×10⁻¹² F/m。电势移
D
{displaystyle mathbf {D} }
的定义式为其中,
E
{displaystyle mathbf {E} }
是电场,
P
{displaystyle mathbf {P} }
是电极化强度。对于均向性的、线性的、均匀介电质,电极化强度
P
{displaystyle mathbf {P} }
与电场
E
{displaystyle mathbf {E} }
成正比:其中,
χ
e
{displaystyle chi _{text{e}}}
是电极化率所以,电势移与电场的关系方程为其中,
ε
{displaystyle varepsilon }
是电容率。假若,介电质是异向性的,则电容率是一个二阶张量,可用矩阵来表示。一般而言,电容率不是常数,可以随着在介电质内的位置而改变,随着电场的频率、湿度、温度或其它参数而改变。对于一个非线性介电质,电容率有可能会随着电场强度而改变。当电容率是频率的函数时,它的数值有可能是实数,也有可能是复数。真空电容率
ε
0
{displaystyle varepsilon _{0}}
的意义是电势移
D
0
{displaystyle D_{0}}
与电场
E
0
{displaystyle E_{0}}
在真空里的比值,其值的定义式如下:其中,
c
{displaystyle c}
是光波在真空中的光速,
μ
0
{displaystyle mu _{0}}
是真空磁导率。其中,真空磁导率的定义值为
μ
0
=
4
π
×
10
−
7
{displaystyle mu _{0}=4pi times 10^{-7}}
T·m/A。在国际单位制里,常数
c
{displaystyle c}
和
μ
0
{displaystyle mu _{0}}
都是准确值(参阅NIST)。所以,关于米或安培这些物理量单位的数值设定,不能采用定义方式,而必须设计精密的实验来测量计算求得。由于
π
{displaystyle pi }
是个无理数,
ε
0
{displaystyle varepsilon _{0}}
的数值只能够以近似值来表示。真空电容率
ε
0
{displaystyle varepsilon _{0}}
也出现于库仑定律,是库仑常数
k
=
1
4
π
ε
0
{displaystyle k={frac {1}{4pi varepsilon _{0}}}}
的一部分。所以,库仑常数
k
{displaystyle k}
也是一个准确值。对于线性介质,电容率与真空电容率的比率,称为相对电容率
ε
r
{displaystyle varepsilon _{text{r}}}
:请注意,这公式只有在静止的、零频率的状况才成立。对于各向异性材料,相对电容率是个张量;对于各向同性材料,相对电容率是个标量。对于常见的案例,均向性介质,
D
{displaystyle mathbf {D} }
和
E
{displaystyle mathbf {E} }
是平行的矢量,电容率
ε
{displaystyle varepsilon }
是会造成双折射的二阶张量。介质的电容率和磁导率
μ
{displaystyle mu }
,共同地决定了,电磁波通过介质时的相速度
v
p
{displaystyle v_{text{p}}}
:对于线性介电质,电极化强度
P
{displaystyle mathbf {P} }
与电场
E
{displaystyle mathbf {E} }
成正比:将这方程代入电势移的定义式,可以得到电势移与电场的关系式:所以,电容率与电极化率的关系式为一般物质对于含时外电场的响应,跟真空的响应大不相同。一般物质的响应,通常跟外电场的频率有关。这属性反映出一个事实,那就是,由于物质具有质量,物质的电极化响应无法瞬时的跟上外电场。响应总是必需合乎因果关系,这需求可以以相位差来表达。因此,电容率时常以复函数来表达(复数允许同步的设定大小值和相位),而这复函数的参数为外电场频率
ω
{displaystyle omega }
:
ε
→
ε
^
(
ω
)
{displaystyle varepsilon rightarrow {widehat {varepsilon }}(omega )}
。这样,电容率的关系式为其中,
D
0
{displaystyle D_{0}}
和
E
0
{displaystyle E_{0}}
分别是电势移和电场的振幅。请注意,时间相关性项目的正负号选择(指数函数的指数的正负号),决定了电容率虚值部分的正负号常规。在这里采用的正负号惯用于物理学;在工程学里,必须逆反所有虚值部分的正负号。一个介电质对于静电场的响应,是由电容率的低频率极限来描述,又称为“静电容率”
ε
s
{displaystyle varepsilon _{text{s}}}
:在高频率极限,复电容率一般标记为
ε
∞
{displaystyle varepsilon _{infty }}
。当频率等于或超过等离子体频率(plasma frequency)时,介电质的物理行为近似理想金属,可以用自由电子模型来计算。对于低频率交流电场,静电容率是个很好的近似。随着频率的增高,可测量到的相位差
δ
{displaystyle delta }
开始出现于
D
{displaystyle mathbf {D} }
和
E
{displaystyle mathbf {E} }
之间。出现时候的频率跟温度、介质种类有关。在中等的电场强度
E
0
{displaystyle E_{0}}
状况,
D
{displaystyle mathbf {D} }
和
E
{displaystyle mathbf {E} }
保持成正比:由于介质对于交流电场的响应特征是复电容率,为了更详细的分析其物理性质,很自然地,必须分离其实数和虚值部分,通常写为:其中,虚值部分
ε
″
{displaystyle varepsilon ''}
关系到能量的耗散,而实值部分
ε
′
{displaystyle varepsilon '}
则关系到能量的储存。由于复电容率是一个发生于多重频率的色散现象的叠加,其描述必须能够兼顾到这些色散现象。因此,复电容率通常会是一个相当复杂的、参数为频率的函数,称为“介电函数”。电容率
ε
^
{displaystyle {widehat {varepsilon }}}
的极点必须匹配虚值部分为正值的频率,因此满足克拉莫-克若尼关系式。但是,在一般作业的狭窄频率值域内,电容率可以近似为跟频率无关,或者以适当的模型函数为近似。依据电容率和电导率
σ
{displaystyle sigma }
,物质可以大致分为三类:导体、介电质、其它一般介质。高损耗物质会抑制电磁波的传播。通常,这些物质的
σ
ω
ε
≫
1
{displaystyle {frac {sigma }{omega varepsilon }}gg 1}
,可以被视为优良导体。无损耗或低损耗物质,
σ
ω
ε
≪
1
{displaystyle {frac {sigma }{omega varepsilon }}ll 1}
,可以被视为介电质。其它不包括在这两种限制内的物质,被分类为一般介质。完美介电质是电导率等于0的物质,通常只允许有小量的位移电流存在。这种物质储存和归还电能的性质就好像理想电容器一样。对于高损耗介质案例,当传导电流不能被忽略时,总电流密度
J
tot
{displaystyle J_{text{tot}}}
是其中,
J
c
{displaystyle J_{c}}
是传导电流密度,
J
d
{displaystyle J_{d}}
是位移电流密度,
σ
{displaystyle sigma }
是介质的电导率,
ε
{displaystyle varepsilon }
是介质电容率的实值部分,
ε
^
{displaystyle {widehat {varepsilon }}}
是介质的复电容率。位移电流跟外电场
E
{displaystyle E}
的频率
ω
{displaystyle omega }
有关。假若外电场是个静电场,则位移电流等于0。采用这形式论,复电容率定义为通常,介电质对于电磁能量有几种不同的吸收机制。受到这几种吸收机制的影响,随着频率的改变,电容率函数的样子也会有所改变(例:压电材料)。上述两种效应时常会合并起来,使得电容器产生非线性效应。例如,当一个充电很久的电容器被短暂地放电时,它无法完全放电的效应称为“介电质吸收”。一个理想电容器,经过放电后,电压应该是0 伏特。但是,实际的电容器会余留一些电压,称为“残余电压”。有些介电质,像各种不同的聚合物薄膜,残余电压小于原本电压的1~2%。但是,电解电容器(electrolytic capacitor)或超高电容器(supercapacitor)的残余电压可能会高达15~25%。在量子力学里,电容率可以用发生于原子层次和分子层次的量子作用来解释。在较低频率区域,极性介电质的分子会被外电场电极化,因而诱发出周期性转动。例如,在微波频率区域,微波场促使物质内的水分子做周期性转动。水分子与周边分子的相互碰撞产生了热能,使得含水分物质的温度增高。这就是为什么微波炉可以很有效率的将含有水分的物质加热。水的电容率的虚值部分(吸收指数)有两个最大值,一个位于微波频率区域,另一个位于远紫外线(UV)频率区域。这两个共振频率都高于微波炉的操作频率。在中间频率区域,高过促使转动的频率区域,又远低于能够直接影响电子运动的频率区域,能量是以共振的分子振动形式被吸收。对于水介质,这是吸收指数开始显著地下降的区域。吸收指数的最低值是在蓝光频率区域(可见光谱段)。这就是为什么日光不会伤害像眼睛一类的含水生物组织。在高频率区域(像远紫外线频率或更高频率),分子无法弛豫。这时,能量完全地被原子吸收,因而激发电子,使电子跃迁至更高能级,甚至游离出原子。拥有这频率的电磁波会导致电离辐射。虽然,从开始到最后,对于物质的介电行为,做一个完全的计算机模拟,是一个可行之计。但是,这方法还没有得到广泛的使用。替代地,科学家接受现象模型为一个足以胜任的方法,可以用来捕捉实验行为。德拜弛豫和德拜–洛伦兹模型(Lorentz model)都是很优秀的模型。物质的电容率可以用几种静电测量方法来得到。使用各种各样的介电质光谱学(英语:Dielectric spectroscopy)(dielectric spectroscopy)方法,在广泛频率值域内,任何频率的复电容率都可以正确地评估出来。这频率值域覆盖接近21个数量级的大小值,从10−6到1015 赫兹。另外,使用低温恒温器(cryostat)和烤炉,科学家可以测量出,在不同的温度状况下,物质的介电性质。椭圆偏振技术可以用在红外线频段和可见光频段。也有一些方法用于介电常数的测量。介电常数在微波的范围可以由共振方法测量。
相关
- 肠肠可以是:
- 磺胺硫脲磺胺硫脲是一种磺胺类药物,其INN名称是“Sulfathiourea”。该药物可用于治疗由细菌感染引发的疾病。该药物在血液中的半衰期尚不明确。该药物分子是经将硫脲中的一个氢原子取
- 甲状舌骨正中韧带甲状舌骨正中韧带(median thyrohyoid ligament、middle hyothyroid ligament、middle thyrohyoid ligament)是甲状舌骨膜(英语:Thyrohyoid membrane)较厚的部分。其外侧较薄的部
- 语文语文,包括语和文,即口头语和书面语。中国大陆学校的汉民族语文科目通常被称为语文。日常生活中,语跟文两字并无严格指口头语及书面语而混用之,如英语说明书,中文报导等。清末1904
- 膀胱颈膀胱是哺乳动物贮尿的囊状器官,功能是暂存和排泄小便。经肾脏过滤之后的含有代谢产物的体液流入膀胱,形成尿液;当排尿时,膀胱壁的肌肉收缩,出口处的括约肌放松。膀胱是中空的、由
- BiHsub3/sub铋化氢又称䏟,是由铋和氢组成,化学式为BiH3的化合物。铋化氢是所有结构和氨同为XH3的化合物中,分子量最大的一个。铋化氢不稳定,即使在摄氏零度以下,仍然会分解为铋和氢气。铋化
- 虞有虞氏,又称虞朝,是中国历史上一个可能存在过数百年的王朝,在夏朝之前。虞朝位于今山西平陆西南,舜是虞朝的最后一位君主。在《左传》、《国语》中,虞夏商周四代连称的文句不胜枚
- TeOsub2/sub二氧化碲化学式TeO2,是一种白色固体,加热变黄。其有两种晶型,无色四面体结晶的副黄碲矿是四方晶系的α-TeO2,黄色的单斜矿石黄碲矿是β-TeO2。对于二氧化碲性质的研究多基于α-T
- 彭堃墀彭堃墀(1936年8月25日-),中国光学专家。生于江苏镇江,原籍四川广元。1961年毕业于四川大学物理系。现任山西大学光电研究所所长、教授。2003年当选为中国科学院院士。1982-1984年
- 生物能源生物能源(Bioenergy)是从生物来源的材料制成的可再生能源。生物质是太阳光中的化学能的形式存储的的任何有机材料。作为一种燃料,它可能包括木材,废木料,秸秆,有机肥,甘蔗,和多种农