双电子积分 (量子化学)

✍ dations ◷ 2025-07-16 04:38:39 #量子化学

双电子积分就是涉及两个电子坐标的积分,是量子化学计算中出现频率最高的一类积分,也是进行Hartree-Fock方程自洽场计算和其他高级量子化学计算过程中计算量最大的一个部分。构成一个双电子积分的,是二至四个不同的轨道波函数、一个涉及两个电子坐标的算子(即双电子算子)和两套电子坐标。在量子化学计算中,出现频率最高的双电子算子是 1 r 12 {\displaystyle {\frac {1}{r_{12}}}} ,即在原子单位下表征两电子间库仑排斥力的算子。

双电子积分的基本形式是这样的:

d x 1 d x 2 χ 1 ( x 1 ) χ 2 ( x 2 ) 1 r 12 χ 1 ( x 1 ) χ 2 ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{1}^{*}(x_{1})\chi _{2}^{*}(x_{2}){\frac {1}{r_{12}}}\chi _{1}(x_{1})\chi _{2}(x_{2})}

其中的 χ 1 ( x 1 ) {\displaystyle \chi _{1}(x_{1})} χ 2 ( x 2 ) {\displaystyle \chi _{2}(x_{2})} 表示参与积分的单电子波函数; x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} 表示电子坐标,其中包含三个方向的笛卡儿坐标和一个自旋坐标; 1 r 12 {\displaystyle {\frac {1}{r_{12}}}} 即上面提到的双电子算子。

也可以用狄拉克符号来简写上述双电子积分:

χ 1 ( x 1 ) χ 2 ( x 2 ) | 1 r 12 | χ 1 ( x 1 ) χ 2 ( x 2 ) {\displaystyle \langle \chi _{1}(x_{1})\chi _{2}(x_{2})|{\frac {1}{r_{12}}}|\chi _{1}(x_{1})\chi _{2}(x_{2})\rangle }

两者在数学上是完全一样的。

对于使用 1 r 12 {\displaystyle {\frac {1}{r_{12}}}} 算子的双电子积分,由于在量子化学中出现的频率极高,因而使用专门的符号来表示,即所谓物理符号和化学符号

物理符号的形式是 χ i χ j | χ k χ l {\displaystyle \langle \chi _{i}\chi _{j}|\chi _{k}\chi _{l}\rangle } ,有时也简单表示为 i j | k l {\displaystyle \langle ij|kl\rangle } ,这一表示等价于:

d x 1 d x 2 χ i ( x 1 ) χ j ( x 2 ) 1 r 12 χ k ( x 1 ) χ l ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{i}^{*}(x_{1})\chi _{j}^{*}(x_{2}){\frac {1}{r_{12}}}\chi _{k}(x_{1})\chi _{l}(x_{2})}

分布在表示中单竖线之前的是取复共轭的轨道波函数,分布在单竖线之后的是不取复共轭的轨道波函数,在竖线同一侧的两个波函数中,位于左则的一个波函数其变量为 x 1 {\displaystyle x_{1}} ;位于右则的波函数变量为 x 2 {\displaystyle x_{2}} ,也就是 12 | 12 {\displaystyle \langle 12|12\rangle }

我们注意到电子座标 x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} 是可交换的,所以

i j | k l {\displaystyle \langle ij|kl\rangle } = k l | i j {\displaystyle \langle kl|ij\rangle }

在此基础上可以进一步定义更加复杂的物理符号:

i j | | k l = i j | k l i j | l k {\displaystyle \langle ij||kl\rangle =\langle ij|kl\rangle -\langle ij|lk\rangle }

这一表示也可改写如下:

d x 1 d x 2 χ i ( x 1 ) χ j ( x 2 ) 1 P 12 r 12 χ k ( x 1 ) χ l ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{i}^{*}(x_{1})\chi _{j}^{*}(x_{2})*{\frac {1-P_{12}}{r_{12}}}\chi _{k}(x_{1})\chi _{l}(x_{2})}

其中 P 12 {\displaystyle P_{12}} 为交换电子1及电子2的算子。考虑到电子坐标的等价性和符号本身的数学意义,物理符号有如下性质:

i j | | k l = j i | | l k {\displaystyle \langle ij||kl\rangle =\langle ji||lk\rangle }

i j | | k l = i j | | l k {\displaystyle \langle ij||kl\rangle =-\langle ij||lk\rangle }

化学符号的形式是 {\displaystyle } ,有时候也简单地表示为 {\displaystyle } ,这一表示等价于:

d x 1 d x 2 χ i ( x 1 ) χ j ( x 2 ) 1 r 12 χ k ( x 1 ) χ l ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{i}^{*}(x_{1})\chi _{j}^{*}(x_{2}){\frac {1}{r_{12}}}\chi _{k}(x_{1})\chi _{l}(x_{2})}

分布在表示中单竖线之前的是电子坐标为 x 1 {\displaystyle x_{1}} 的轨道波函数,分布在单竖线之后的是电子坐标为 x 2 {\displaystyle x_{2}} ;的轨道波函数,在竖线同一侧的两个波函数中,位于左则的一个波函数须取复共轭,并在积分中位于算子的左侧位于右则的波函数不取复共轭,并在积分中位于算子的右侧。也就是 {\displaystyle } ,与物理符号 12 | 12 {\displaystyle \langle 12|12\rangle } 相同的是,两个同样数字的(同样电子座标)的轨域中,靠左边的是取复共轭,靠右边的是没取的。

由于电子1与电子2的交换不影响积分结果。所以我们有 = {\displaystyle =} 。而在量子化学计算里,波函数通常是实数,因此有 = = {\displaystyle ==}

组合以上关系,共有八种交换对称:

= = = {\displaystyle ===} = = = = {\displaystyle ====}

与物理符号一样,化学符号也有更进一步的形式:

= {\displaystyle =-}

由于将相同变量的波函数集中在符号的一侧,因而化学符号在使用中比物理符号更方便,在量子化学计算中,出现的频率更高。

在实际应用中还有约化掉自旋函数的化学符号:

( i k | j l ) {\displaystyle (ik|jl)}

在这个积分中,参与积分的轨道波函数仅仅含有空间部分,积分的变量也仅仅含有空间笛卡儿坐标,自旋函数以及自旋坐标被分离后单独积分了,而空间函数的积分规则与化学符号 {\displaystyle } 完全一致。

由两者的表示规则可以得出两者之间的关系为:

i j | k l = {\displaystyle \langle ij|kl\rangle =}

i j | | k l = {\displaystyle \langle ij||kl\rangle =}

量子化学Hartree-Fock方程

相关

  • 查尔斯·利伯查尔斯·M·利伯(英语:Charles M. Lieber,1959年4月9日-)是美国化学家,美国国家科学院院士、哈佛大学教授、国际纳米技术领军人物之一。他出生于一个犹太家庭。2012年获得沃尔夫化
  • 超级计算机超级计算机(英语:Supercomputer),指能够执行一般个人电脑无法处理的高速运算的计算机,规格与性能比个人计算机强大许多。现有的超级计算机运算速度大都可以达到每秒一兆(万亿,非百
  • ʙ̥清双唇颤音是一种罕见的辅音,用于一些口语中。表示此音的国际音标(IPA)符号是⟨ʙ̥⟩,X-SAMPA符号则为B\_0。清双唇颤音的特征包括:当符号成对出现时,左边的是清音,右边的是浊音。
  • 猎人猎人主要是指进行狩猎的人。在野生动物保护区,有些会要求有核准的猎人证方可狩猎。猎人也可以指:
  • 赫勒拿海伦娜(又译赫勒拿;Helena)是美国蒙大拿州的首府、刘易斯与克拉克县县治。面积36平方公里。根据2010年美国人口普查,人口28,190人,而其所在的刘易斯与克拉克县人口为63,395人。海
  • 考门夫人丽蒂·伯德·考门(英语:Lettie Burd Cowman,1870年3月3日-1960年4月17日),在她出版的书籍中常署名为考门夫人(Mrs. Charles E. Cowman)或高曼夫人,生于美国伊利诺伊州,基督教传道人,作
  • 蓝龙 (动画) 根华出版社《蓝龙》(日语:BLUE DRAGON)为Mist Walker以游戏软件《蓝龙》为原作改编而成的动画。2007年4月到2009年3月播放。以描述主角修为首的少年少女们能够操控自己的“影
  • 吉祥草吉祥草(学名:)为百合科吉祥草属下的一个种。产中国华东、华中、华南、西南大部分地区,生于阴湿山坡、山谷或密林下,海拔170-3200米。
  • 安藤樱安藤樱(日语:安藤 サクラ,1986年2月18日-),日本女演员。结婚前本名为“安藤 さくら”,东京都出身,经纪公司为Humanité(日语:ユマニテ (企業))。曾获多座电影奖,被日本媒体称为“个性派
  • 宫崎慎二宫崎慎二(1956年10月7日-),日本作曲家、编曲家。出身于爱媛县松山市出身。毕业于尚美高等音乐学院。现隶属于IMAGINE。曾经为哆啦A梦、蜡笔小新及神奇宝贝等多部动画的剧场版作