双电子积分 (量子化学)

✍ dations ◷ 2024-12-23 05:56:24 #量子化学

双电子积分就是涉及两个电子坐标的积分,是量子化学计算中出现频率最高的一类积分,也是进行Hartree-Fock方程自洽场计算和其他高级量子化学计算过程中计算量最大的一个部分。构成一个双电子积分的,是二至四个不同的轨道波函数、一个涉及两个电子坐标的算子(即双电子算子)和两套电子坐标。在量子化学计算中,出现频率最高的双电子算子是 1 r 12 {\displaystyle {\frac {1}{r_{12}}}} ,即在原子单位下表征两电子间库仑排斥力的算子。

双电子积分的基本形式是这样的:

d x 1 d x 2 χ 1 ( x 1 ) χ 2 ( x 2 ) 1 r 12 χ 1 ( x 1 ) χ 2 ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{1}^{*}(x_{1})\chi _{2}^{*}(x_{2}){\frac {1}{r_{12}}}\chi _{1}(x_{1})\chi _{2}(x_{2})}

其中的 χ 1 ( x 1 ) {\displaystyle \chi _{1}(x_{1})} χ 2 ( x 2 ) {\displaystyle \chi _{2}(x_{2})} 表示参与积分的单电子波函数; x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} 表示电子坐标,其中包含三个方向的笛卡儿坐标和一个自旋坐标; 1 r 12 {\displaystyle {\frac {1}{r_{12}}}} 即上面提到的双电子算子。

也可以用狄拉克符号来简写上述双电子积分:

χ 1 ( x 1 ) χ 2 ( x 2 ) | 1 r 12 | χ 1 ( x 1 ) χ 2 ( x 2 ) {\displaystyle \langle \chi _{1}(x_{1})\chi _{2}(x_{2})|{\frac {1}{r_{12}}}|\chi _{1}(x_{1})\chi _{2}(x_{2})\rangle }

两者在数学上是完全一样的。

对于使用 1 r 12 {\displaystyle {\frac {1}{r_{12}}}} 算子的双电子积分,由于在量子化学中出现的频率极高,因而使用专门的符号来表示,即所谓物理符号和化学符号

物理符号的形式是 χ i χ j | χ k χ l {\displaystyle \langle \chi _{i}\chi _{j}|\chi _{k}\chi _{l}\rangle } ,有时也简单表示为 i j | k l {\displaystyle \langle ij|kl\rangle } ,这一表示等价于:

d x 1 d x 2 χ i ( x 1 ) χ j ( x 2 ) 1 r 12 χ k ( x 1 ) χ l ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{i}^{*}(x_{1})\chi _{j}^{*}(x_{2}){\frac {1}{r_{12}}}\chi _{k}(x_{1})\chi _{l}(x_{2})}

分布在表示中单竖线之前的是取复共轭的轨道波函数,分布在单竖线之后的是不取复共轭的轨道波函数,在竖线同一侧的两个波函数中,位于左则的一个波函数其变量为 x 1 {\displaystyle x_{1}} ;位于右则的波函数变量为 x 2 {\displaystyle x_{2}} ,也就是 12 | 12 {\displaystyle \langle 12|12\rangle }

我们注意到电子座标 x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} 是可交换的,所以

i j | k l {\displaystyle \langle ij|kl\rangle } = k l | i j {\displaystyle \langle kl|ij\rangle }

在此基础上可以进一步定义更加复杂的物理符号:

i j | | k l = i j | k l i j | l k {\displaystyle \langle ij||kl\rangle =\langle ij|kl\rangle -\langle ij|lk\rangle }

这一表示也可改写如下:

d x 1 d x 2 χ i ( x 1 ) χ j ( x 2 ) 1 P 12 r 12 χ k ( x 1 ) χ l ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{i}^{*}(x_{1})\chi _{j}^{*}(x_{2})*{\frac {1-P_{12}}{r_{12}}}\chi _{k}(x_{1})\chi _{l}(x_{2})}

其中 P 12 {\displaystyle P_{12}} 为交换电子1及电子2的算子。考虑到电子坐标的等价性和符号本身的数学意义,物理符号有如下性质:

i j | | k l = j i | | l k {\displaystyle \langle ij||kl\rangle =\langle ji||lk\rangle }

i j | | k l = i j | | l k {\displaystyle \langle ij||kl\rangle =-\langle ij||lk\rangle }

化学符号的形式是 {\displaystyle } ,有时候也简单地表示为 {\displaystyle } ,这一表示等价于:

d x 1 d x 2 χ i ( x 1 ) χ j ( x 2 ) 1 r 12 χ k ( x 1 ) χ l ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{i}^{*}(x_{1})\chi _{j}^{*}(x_{2}){\frac {1}{r_{12}}}\chi _{k}(x_{1})\chi _{l}(x_{2})}

分布在表示中单竖线之前的是电子坐标为 x 1 {\displaystyle x_{1}} 的轨道波函数,分布在单竖线之后的是电子坐标为 x 2 {\displaystyle x_{2}} ;的轨道波函数,在竖线同一侧的两个波函数中,位于左则的一个波函数须取复共轭,并在积分中位于算子的左侧位于右则的波函数不取复共轭,并在积分中位于算子的右侧。也就是 {\displaystyle } ,与物理符号 12 | 12 {\displaystyle \langle 12|12\rangle } 相同的是,两个同样数字的(同样电子座标)的轨域中,靠左边的是取复共轭,靠右边的是没取的。

由于电子1与电子2的交换不影响积分结果。所以我们有 = {\displaystyle =} 。而在量子化学计算里,波函数通常是实数,因此有 = = {\displaystyle ==}

组合以上关系,共有八种交换对称:

= = = {\displaystyle ===} = = = = {\displaystyle ====}

与物理符号一样,化学符号也有更进一步的形式:

= {\displaystyle =-}

由于将相同变量的波函数集中在符号的一侧,因而化学符号在使用中比物理符号更方便,在量子化学计算中,出现的频率更高。

在实际应用中还有约化掉自旋函数的化学符号:

( i k | j l ) {\displaystyle (ik|jl)}

在这个积分中,参与积分的轨道波函数仅仅含有空间部分,积分的变量也仅仅含有空间笛卡儿坐标,自旋函数以及自旋坐标被分离后单独积分了,而空间函数的积分规则与化学符号 {\displaystyle } 完全一致。

由两者的表示规则可以得出两者之间的关系为:

i j | k l = {\displaystyle \langle ij|kl\rangle =}

i j | | k l = {\displaystyle \langle ij||kl\rangle =}

量子化学Hartree-Fock方程

相关

  • 唐纳德·戴维森唐纳德·赫伯特·戴维森(英语:Donald Davidson,1917年3月6日-2003年8月30日)20世纪下半叶美国最为著名和活跃的哲学家之一。戴维森1917年3月6日生于美国麻省斯普林菲尔德。在早期
  • 丈是东亚传统长度单位,十尺为一丈。古时,成年男子身高约一丈,所以称为“丈夫”。市制一丈等于 10 3
  • 阿拉伯旗帜列表这是一个有关于阿拉伯世界的阿拉伯旗帜列表。阿拉伯旗帜经常采用伊斯兰教的象征颜色:绿色。绿色象征着纯洁、繁衍与和平。绝大多数的阿拉伯旗帜中经常采用的颜色包括红色、黑
  • 复活节的计算复活节的计算(computus,拉丁文“计算”之意),其规则是复活节的日期是在3月21日当日或之后的满月日后的首个星期日。天主教会设计了方法去定一个“天主教的月”,而不像犹太人般观
  • 情人·知己《情人×知己》是台湾女歌手梁文音的第三张专辑,于2011年4月8日预购,2011年4月29日正式发行,首波主打歌《情人知己》,MV于日本福井县取景,拍摄时正值日本311大地震。
  • 凯霍斯鲁二世吉亚斯丁·凯霍斯鲁二世(阿拉伯语、波斯语:غياث الدين كيخسرو بن كيقباد、Ghīyāth al-Dīn Kaykhusraw bin Kayqubād,土耳其语:II. Gıyaseddin Keyh
  • 产品层次产品层次是行销学上将产品的本质区分成三个层次,以探讨消费者对产品的感觉,以及如何进一步刺激消费者消费的改进方向。产品层次仅为一概念,提供新产品开发与行销的发展方向,但实
  • 锡斯坦和俾路支斯坦省锡斯坦和俾路支斯坦省(波斯语:استان سیستان و بلوچستان‎)是伊朗的一个省。面积181,785公里,在所有省份中排行第1。2005年人口约2,290,076,2011年人口2,534,
  • 亲爱的别哭亲爱的别哭(法语:La Guerre est déclarée)是2011年法国导演华蕾莉·董泽利的作品。该片代表法国参加2011年第84届奥斯卡的最佳外语片奖,但未入围。 维基共享资源中与亲爱的别
  • 哆啦美与迷你哆啦SOS《哆啦美与迷你哆啦SOS》是第一部以哆啦美为主角的哆啦A梦系列电影,于1989年3月11日公开,为《大雄的日本诞生》的附篇电影,片长40分钟。由于野比大雄在订购迷你哆啦时把订购单