双电子积分 (量子化学)

✍ dations ◷ 2025-10-19 20:00:52 #量子化学

双电子积分就是涉及两个电子坐标的积分,是量子化学计算中出现频率最高的一类积分,也是进行Hartree-Fock方程自洽场计算和其他高级量子化学计算过程中计算量最大的一个部分。构成一个双电子积分的,是二至四个不同的轨道波函数、一个涉及两个电子坐标的算子(即双电子算子)和两套电子坐标。在量子化学计算中,出现频率最高的双电子算子是 1 r 12 {\displaystyle {\frac {1}{r_{12}}}} ,即在原子单位下表征两电子间库仑排斥力的算子。

双电子积分的基本形式是这样的:

d x 1 d x 2 χ 1 ( x 1 ) χ 2 ( x 2 ) 1 r 12 χ 1 ( x 1 ) χ 2 ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{1}^{*}(x_{1})\chi _{2}^{*}(x_{2}){\frac {1}{r_{12}}}\chi _{1}(x_{1})\chi _{2}(x_{2})}

其中的 χ 1 ( x 1 ) {\displaystyle \chi _{1}(x_{1})} χ 2 ( x 2 ) {\displaystyle \chi _{2}(x_{2})} 表示参与积分的单电子波函数; x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} 表示电子坐标,其中包含三个方向的笛卡儿坐标和一个自旋坐标; 1 r 12 {\displaystyle {\frac {1}{r_{12}}}} 即上面提到的双电子算子。

也可以用狄拉克符号来简写上述双电子积分:

χ 1 ( x 1 ) χ 2 ( x 2 ) | 1 r 12 | χ 1 ( x 1 ) χ 2 ( x 2 ) {\displaystyle \langle \chi _{1}(x_{1})\chi _{2}(x_{2})|{\frac {1}{r_{12}}}|\chi _{1}(x_{1})\chi _{2}(x_{2})\rangle }

两者在数学上是完全一样的。

对于使用 1 r 12 {\displaystyle {\frac {1}{r_{12}}}} 算子的双电子积分,由于在量子化学中出现的频率极高,因而使用专门的符号来表示,即所谓物理符号和化学符号

物理符号的形式是 χ i χ j | χ k χ l {\displaystyle \langle \chi _{i}\chi _{j}|\chi _{k}\chi _{l}\rangle } ,有时也简单表示为 i j | k l {\displaystyle \langle ij|kl\rangle } ,这一表示等价于:

d x 1 d x 2 χ i ( x 1 ) χ j ( x 2 ) 1 r 12 χ k ( x 1 ) χ l ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{i}^{*}(x_{1})\chi _{j}^{*}(x_{2}){\frac {1}{r_{12}}}\chi _{k}(x_{1})\chi _{l}(x_{2})}

分布在表示中单竖线之前的是取复共轭的轨道波函数,分布在单竖线之后的是不取复共轭的轨道波函数,在竖线同一侧的两个波函数中,位于左则的一个波函数其变量为 x 1 {\displaystyle x_{1}} ;位于右则的波函数变量为 x 2 {\displaystyle x_{2}} ,也就是 12 | 12 {\displaystyle \langle 12|12\rangle }

我们注意到电子座标 x 1 {\displaystyle x_{1}} x 2 {\displaystyle x_{2}} 是可交换的,所以

i j | k l {\displaystyle \langle ij|kl\rangle } = k l | i j {\displaystyle \langle kl|ij\rangle }

在此基础上可以进一步定义更加复杂的物理符号:

i j | | k l = i j | k l i j | l k {\displaystyle \langle ij||kl\rangle =\langle ij|kl\rangle -\langle ij|lk\rangle }

这一表示也可改写如下:

d x 1 d x 2 χ i ( x 1 ) χ j ( x 2 ) 1 P 12 r 12 χ k ( x 1 ) χ l ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{i}^{*}(x_{1})\chi _{j}^{*}(x_{2})*{\frac {1-P_{12}}{r_{12}}}\chi _{k}(x_{1})\chi _{l}(x_{2})}

其中 P 12 {\displaystyle P_{12}} 为交换电子1及电子2的算子。考虑到电子坐标的等价性和符号本身的数学意义,物理符号有如下性质:

i j | | k l = j i | | l k {\displaystyle \langle ij||kl\rangle =\langle ji||lk\rangle }

i j | | k l = i j | | l k {\displaystyle \langle ij||kl\rangle =-\langle ij||lk\rangle }

化学符号的形式是 {\displaystyle } ,有时候也简单地表示为 {\displaystyle } ,这一表示等价于:

d x 1 d x 2 χ i ( x 1 ) χ j ( x 2 ) 1 r 12 χ k ( x 1 ) χ l ( x 2 ) {\displaystyle \int dx_{1}dx_{2}\chi _{i}^{*}(x_{1})\chi _{j}^{*}(x_{2}){\frac {1}{r_{12}}}\chi _{k}(x_{1})\chi _{l}(x_{2})}

分布在表示中单竖线之前的是电子坐标为 x 1 {\displaystyle x_{1}} 的轨道波函数,分布在单竖线之后的是电子坐标为 x 2 {\displaystyle x_{2}} ;的轨道波函数,在竖线同一侧的两个波函数中,位于左则的一个波函数须取复共轭,并在积分中位于算子的左侧位于右则的波函数不取复共轭,并在积分中位于算子的右侧。也就是 {\displaystyle } ,与物理符号 12 | 12 {\displaystyle \langle 12|12\rangle } 相同的是,两个同样数字的(同样电子座标)的轨域中,靠左边的是取复共轭,靠右边的是没取的。

由于电子1与电子2的交换不影响积分结果。所以我们有 = {\displaystyle =} 。而在量子化学计算里,波函数通常是实数,因此有 = = {\displaystyle ==}

组合以上关系,共有八种交换对称:

= = = {\displaystyle ===} = = = = {\displaystyle ====}

与物理符号一样,化学符号也有更进一步的形式:

= {\displaystyle =-}

由于将相同变量的波函数集中在符号的一侧,因而化学符号在使用中比物理符号更方便,在量子化学计算中,出现的频率更高。

在实际应用中还有约化掉自旋函数的化学符号:

( i k | j l ) {\displaystyle (ik|jl)}

在这个积分中,参与积分的轨道波函数仅仅含有空间部分,积分的变量也仅仅含有空间笛卡儿坐标,自旋函数以及自旋坐标被分离后单独积分了,而空间函数的积分规则与化学符号 {\displaystyle } 完全一致。

由两者的表示规则可以得出两者之间的关系为:

i j | k l = {\displaystyle \langle ij|kl\rangle =}

i j | | k l = {\displaystyle \langle ij||kl\rangle =}

量子化学Hartree-Fock方程

相关

  • 艮部,为汉字索引中的部首之一,康熙字典214个部首中的第一百三十八个(六划的则为第二十一个)。就繁体和简体中文中,艮部归于六划部首。艮部只以右、下方为部字。且无其他部首可用
  • 亚太亚太地区,全称为亚洲及太平洋地区,缩写为APAC,是西太平洋地区周边国家包括岛屿的总称。亚太地区在狭义上,是指东亚、东南亚等太平洋西岸的亚洲地区、大洋洲、以及太平洋上的各岛
  • 搜狗浏览器搜狗浏览器是一款由搜狐旗下的搜狗公司开发的网页浏览器,使用IE以及Chromium内核。其特色是内置代理加速功能,可提升联通、电信及教育网三大网段之间的互访速度,适合教育网用户
  • 基隆级驱逐舰基隆级驱逐舰是中华民国海军所操作、一系列为数共四艘的导弹驱逐舰。2005年起陆续成军的基隆级原为美国海军基德级驱逐舰(Kidd class),这是种以史普鲁恩斯级(Spruance-class)驱逐
  • 多米尼克·罗歇托多米尼克·罗歇托(法语:Dominique Rocheteau,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","
  • 陈国凯陈国凯(1938年4月-2014年5月16日),男,广东五华人,中华人民共和国作家。早年创作大量作品,其中小说《我应该怎么办》获1979年全国优秀短篇小说奖,长篇小说《代价》获1980年广东省首届
  • 塔卡特普尔塔卡特普尔(Takhatpur),是印度恰蒂斯加尔邦Bilaspur县的一个城镇。总人口16989(2001年)。该地2001年总人口16989人,其中男性8650人,女性8339人;0—6岁人口2365人,其中男1218人,女1147
  • 司徒迈司徒迈(法语:Stromae)真名为保罗·范哈沃(Paul Van Haver,1985年3月12日-),是来自比利时的电音歌手和创作人, 2010年以电音歌曲《Alors on danse》(《那,我们跳舞吧》)红遍法语地区。司
  • 左鼎左鼎(1409年-1458年),字周器,号立齐,江西吉安府永新县怀忠镇岭上自然村人,民籍。明朝官员。进士出身。正统七年(1442年)壬戌科进士,次年都御史王文、吏部尚书王直考核选举,授监察御史,左
  • 山田章博山田章博(1957年2月10日-),日本漫画家及插画家,出生于高知县高知市,目前住在京都府。作品类型涵盖漫画、插画、动画及电玩人物设定等。