精细结构

✍ dations ◷ 2025-05-19 08:12:02 #量子力学,原子物理学

在原子物理学里,因为一阶相对论性效应,与自旋-轨道耦合,而产生的原子谱线分裂,称为精细结构。

非相对论性、不考虑自旋的电子产生的谱线称为粗略结构。类氢原子的粗略结构只与主量子数 n {\displaystyle n\,\!} 有关;更精确的模型,考虑到相对论效应与自旋-轨道效应,能够分解能级的简并,使谱线能更精细地分裂。相对于粗略结构,精细结构是一个 ( Z α ) 2 {\displaystyle (Z\alpha )^{2}\,\!} 效应;其中, Z {\displaystyle Z\,\!} 是原子序数, α {\displaystyle \alpha \,\!} 是精细结构常数。

精细结构修正包括相对论性的动能修正与自旋-轨道修正。整个哈密顿量 H {\displaystyle H\,\!}

其中, H ( 0 ) {\displaystyle H^{(0)}\,\!} 是零摄动哈密顿量, H k i n e t i c {\displaystyle H_{kinetic}\,\!} 是动能修正, H s o {\displaystyle H_{so}\,\!} 是自旋-轨道修正。

经典哈密顿量的动能项目是

其中, T {\displaystyle T\,\!} 是动能, p {\displaystyle p\,\!} 是动量, m {\displaystyle m\,\!} 是质量。

可是,若加入狭义相对论的效应,我们必须使用相对论形式的动能:

其中, c {\displaystyle c\,\!} 是光速。

请注意在这方程的右手边,平方根项目是总相对论性能量, m c 2 {\displaystyle mc^{2}\,\!} 项目是电子的静能量。假设 p m c {\displaystyle p\ll mc\,\!} ,则可以用泰勒级数展开平方根项目:

哈密顿量的动能修正是

将这修正当作一个小摄动,根据量子力学的摄动理论,我们可以计算出相对论性的一阶能量修正 E n ( 1 ) {\displaystyle E_{n}^{(1)}\,\!}

其中, n {\displaystyle n\,\!} 是主量子数,零摄动波函数 ψ n ( 0 ) {\displaystyle \psi _{n}^{(0)}\,\!} 是本征能量为 E n ( 0 ) {\displaystyle E_{n}^{(0)}\,\!} 的本征函数, E n ( 0 ) = Z 2 α 2 m c 2 2 n 2 {\displaystyle E_{n}^{(0)}=-{\frac {Z^{2}\alpha ^{2}mc^{2}}{2n^{2}}}\,\!} ,精细结构常数 α = e 2 4 π ϵ 0 c {\displaystyle \alpha ={\frac {e^{2}}{4\pi \epsilon _{0}\hbar c}}\,\!}

回想零摄动哈密顿量 H ( 0 ) {\displaystyle H^{(0)}\,\!} ψ n ( 0 ) {\displaystyle \psi _{n}^{(0)}\,\!} 的关系方程:

零摄动哈密顿量等于动能加上势能 V {\displaystyle V\,\!}

将势能移到公式右手边:

将这结果代入 E n ( 1 ) {\displaystyle E_{n}^{(1)}\,\!} 的公式:

类氢原子的势能是 V = Z e 2 4 π ϵ 0 r {\displaystyle V={\frac {Ze^{2}}{4\pi \epsilon _{0}r}}\,\!} ;其中, e {\displaystyle e\,\!} 是单位电荷量, r {\displaystyle r\,\!} 是径向距离。经过一番繁琐的运算,可以得到

其中, a 0 = α m c {\displaystyle a_{0}={\frac {\hbar }{\alpha mc}}\,\!} 是玻尔半径, l {\displaystyle l\,\!} 是角量子数。

将这两个结果代入,经过一番运算,可以得到相对论修正:

当我们从标准参考系(原子核的静止参考系;原子核是不动的,电子运动于它环绕着原子核的轨道)改变至电子的静止参考系(电子是不动的,原子核运动于它环绕着电子的轨道)时,我们会遇到自旋-轨道修正。在这状况,运动中的原子核有效地形成了一个电流圈,这会产生磁场 B {\displaystyle \mathbf {B} \,\!} .可是,因为电子的自旋,电子自己拥有磁矩 μ {\displaystyle {\boldsymbol {\mu }}\,\!} 。两个磁矢量 B {\displaystyle \mathbf {B} \,\!} μ {\displaystyle {\boldsymbol {\mu }}\,\!} 共同耦合.这使得哈密顿量内,又添加了一个项目:

其中, ϵ 0 {\displaystyle \epsilon _{0}\,\!} 是真空电容率, L {\displaystyle \mathbf {L} \,\!} 是角动量, S {\displaystyle \mathbf {S} \,\!} 是自旋。

设定总角动量 J = L + S {\displaystyle \mathbf {J} =\mathbf {L} +\mathbf {S} \,\!} 。应用一阶摄动理论,由于 H s o {\displaystyle H_{so}\,\!} J 2 {\displaystyle J^{2}\,\!} L 2 {\displaystyle L^{2}\,\!} S 2 {\displaystyle S^{2}\,\!} ,这四个算符都互相对易。 H ( 0 ) {\displaystyle H^{(0)}\,\!} J 2 {\displaystyle J^{2}\,\!} L 2 {\displaystyle L^{2}\,\!} S 2 {\displaystyle S^{2}\,\!} ,这四个算符也都互相对易。这四个算符的共同本征函数可以被用为零摄动波函数 | n , j , l , s {\displaystyle |n,j,l,s\rangle \,\!} ;其中, j {\displaystyle j\,\!} 是总角量子数, s {\displaystyle s\,\!} 是自旋量子数。那么,经过一番运算,可以得到能级位移

相对论性修正与自旋-轨道修正的总和是

其中, j = l ± 1 / 2 {\displaystyle j=l\pm 1/2\,\!}

j {\displaystyle j\,\!} 的这两个数值分别代入总合方程里,经过一番运算,可以得到同样的结果:

总结,修正后,取至一阶,电子的总能级为,

其中, E 1 ( 0 ) = 13.6   e v {\displaystyle E_{1}^{(0)}=-13.6\ ev\,\!} 是电子的基态能级, α 1 137 {\displaystyle \alpha \approx {\frac {1}{137}}\,\!} 是精细结构常数。

从狄拉克方程直接求解得到的结果是:

其一阶近似就是上面的结果。

相关

  • 联合国改革联合国改革,自从联合国产生之日起,就在不断进行。联合国改革一词的指涉范围很广,包括从希望消灭联合国的到希望联合国有全面功能主张的支持者,都称他们的看法为联合国改革。而联
  • 迈斯纳效应迈斯纳效应是超导体从一般状态相变至超导态的过程中对磁场的排斥现象,于1933年时被瓦尔特·迈斯纳与罗伯特·奥克森菲尔德(英语:Robert Ochsenfeld)在量度超导锡及铅样品外的磁
  • 棕色脂肪棕色脂肪组织(英语:brown adipose tissue,缩写为BAT),是动物体内一种主要储存中、小型脂肪滴的脂肪细胞,可以产生身体的热能。棕色脂肪细胞具有大量线粒体,线粒体内膜上含有丰富的
  • 2016 HOsub3/sub2016 HO3,或写为2016 HO3,是一颗发现于2016年4月27日的小行星,被认为是至今发现轨道最稳定的地球的准卫星。当2016 HO3环绕太阳时,它看起来也同时环绕地球运转。虽然它和地球距
  • 能垒活化能(Activation energy)是一个化学名词,又被称为阈能。这一名词是由阿瑞尼士在1889年引入,用来定义一个化学反应的发生所需要克服的能量障碍。活化能可以用于表示一个化学反
  • 加拿大国家公园加拿大国家公园 Canadian National Parks 位于班夫国家公园的Mount Chephren与Waterfowl Lake 绿色为加拿大国家公园的分布位置坐标:51°29′48.65″N 115°55′41.00″W / 5
  • 2007年澳门摩托车慢驶抗议道路交通法游行2007年澳门摩托车慢驶抗议道路交通法游行一共进行了三次,您找的可能是:
  • .ht.ht为海地国家及地区顶级域(ccTLD)的域名。A .ac .ad .ae .af .ag .ai .al .am .ao .aq .ar .as .at .au .aw .ax .az  B .ba .bb .bd .be .bf .bg .bh .bi .bj .bm .bn .
  • 足垒球足垒球是一种结合垒球和足球的运动,在台湾的学校当中流行,简单来说是以垒球的规则踢足球,以脚代替球棒,而防守者可徒手接球,但至今尚无明确的规则可寻,通常是在比赛前协调规则。虽
  • 北原宪彦北原宪彦(日语:北原 憲彦/きたはら のりひこ ,1954年12月11日-),日本男子篮球运动员。他曾代表日本参加1976年夏季奥运会男子篮球比赛。他也参加了1982年亚洲运动会,最终获得一枚铜