精细结构

✍ dations ◷ 2025-04-02 18:29:15 #量子力学,原子物理学

在原子物理学里,因为一阶相对论性效应,与自旋-轨道耦合,而产生的原子谱线分裂,称为精细结构。

非相对论性、不考虑自旋的电子产生的谱线称为粗略结构。类氢原子的粗略结构只与主量子数 n {\displaystyle n\,\!} 有关;更精确的模型,考虑到相对论效应与自旋-轨道效应,能够分解能级的简并,使谱线能更精细地分裂。相对于粗略结构,精细结构是一个 ( Z α ) 2 {\displaystyle (Z\alpha )^{2}\,\!} 效应;其中, Z {\displaystyle Z\,\!} 是原子序数, α {\displaystyle \alpha \,\!} 是精细结构常数。

精细结构修正包括相对论性的动能修正与自旋-轨道修正。整个哈密顿量 H {\displaystyle H\,\!}

其中, H ( 0 ) {\displaystyle H^{(0)}\,\!} 是零摄动哈密顿量, H k i n e t i c {\displaystyle H_{kinetic}\,\!} 是动能修正, H s o {\displaystyle H_{so}\,\!} 是自旋-轨道修正。

经典哈密顿量的动能项目是

其中, T {\displaystyle T\,\!} 是动能, p {\displaystyle p\,\!} 是动量, m {\displaystyle m\,\!} 是质量。

可是,若加入狭义相对论的效应,我们必须使用相对论形式的动能:

其中, c {\displaystyle c\,\!} 是光速。

请注意在这方程的右手边,平方根项目是总相对论性能量, m c 2 {\displaystyle mc^{2}\,\!} 项目是电子的静能量。假设 p m c {\displaystyle p\ll mc\,\!} ,则可以用泰勒级数展开平方根项目:

哈密顿量的动能修正是

将这修正当作一个小摄动,根据量子力学的摄动理论,我们可以计算出相对论性的一阶能量修正 E n ( 1 ) {\displaystyle E_{n}^{(1)}\,\!}

其中, n {\displaystyle n\,\!} 是主量子数,零摄动波函数 ψ n ( 0 ) {\displaystyle \psi _{n}^{(0)}\,\!} 是本征能量为 E n ( 0 ) {\displaystyle E_{n}^{(0)}\,\!} 的本征函数, E n ( 0 ) = Z 2 α 2 m c 2 2 n 2 {\displaystyle E_{n}^{(0)}=-{\frac {Z^{2}\alpha ^{2}mc^{2}}{2n^{2}}}\,\!} ,精细结构常数 α = e 2 4 π ϵ 0 c {\displaystyle \alpha ={\frac {e^{2}}{4\pi \epsilon _{0}\hbar c}}\,\!}

回想零摄动哈密顿量 H ( 0 ) {\displaystyle H^{(0)}\,\!} ψ n ( 0 ) {\displaystyle \psi _{n}^{(0)}\,\!} 的关系方程:

零摄动哈密顿量等于动能加上势能 V {\displaystyle V\,\!}

将势能移到公式右手边:

将这结果代入 E n ( 1 ) {\displaystyle E_{n}^{(1)}\,\!} 的公式:

类氢原子的势能是 V = Z e 2 4 π ϵ 0 r {\displaystyle V={\frac {Ze^{2}}{4\pi \epsilon _{0}r}}\,\!} ;其中, e {\displaystyle e\,\!} 是单位电荷量, r {\displaystyle r\,\!} 是径向距离。经过一番繁琐的运算,可以得到

其中, a 0 = α m c {\displaystyle a_{0}={\frac {\hbar }{\alpha mc}}\,\!} 是玻尔半径, l {\displaystyle l\,\!} 是角量子数。

将这两个结果代入,经过一番运算,可以得到相对论修正:

当我们从标准参考系(原子核的静止参考系;原子核是不动的,电子运动于它环绕着原子核的轨道)改变至电子的静止参考系(电子是不动的,原子核运动于它环绕着电子的轨道)时,我们会遇到自旋-轨道修正。在这状况,运动中的原子核有效地形成了一个电流圈,这会产生磁场 B {\displaystyle \mathbf {B} \,\!} .可是,因为电子的自旋,电子自己拥有磁矩 μ {\displaystyle {\boldsymbol {\mu }}\,\!} 。两个磁矢量 B {\displaystyle \mathbf {B} \,\!} μ {\displaystyle {\boldsymbol {\mu }}\,\!} 共同耦合.这使得哈密顿量内,又添加了一个项目:

其中, ϵ 0 {\displaystyle \epsilon _{0}\,\!} 是真空电容率, L {\displaystyle \mathbf {L} \,\!} 是角动量, S {\displaystyle \mathbf {S} \,\!} 是自旋。

设定总角动量 J = L + S {\displaystyle \mathbf {J} =\mathbf {L} +\mathbf {S} \,\!} 。应用一阶摄动理论,由于 H s o {\displaystyle H_{so}\,\!} J 2 {\displaystyle J^{2}\,\!} L 2 {\displaystyle L^{2}\,\!} S 2 {\displaystyle S^{2}\,\!} ,这四个算符都互相对易。 H ( 0 ) {\displaystyle H^{(0)}\,\!} J 2 {\displaystyle J^{2}\,\!} L 2 {\displaystyle L^{2}\,\!} S 2 {\displaystyle S^{2}\,\!} ,这四个算符也都互相对易。这四个算符的共同本征函数可以被用为零摄动波函数 | n , j , l , s {\displaystyle |n,j,l,s\rangle \,\!} ;其中, j {\displaystyle j\,\!} 是总角量子数, s {\displaystyle s\,\!} 是自旋量子数。那么,经过一番运算,可以得到能级位移

相对论性修正与自旋-轨道修正的总和是

其中, j = l ± 1 / 2 {\displaystyle j=l\pm 1/2\,\!}

j {\displaystyle j\,\!} 的这两个数值分别代入总合方程里,经过一番运算,可以得到同样的结果:

总结,修正后,取至一阶,电子的总能级为,

其中, E 1 ( 0 ) = 13.6   e v {\displaystyle E_{1}^{(0)}=-13.6\ ev\,\!} 是电子的基态能级, α 1 137 {\displaystyle \alpha \approx {\frac {1}{137}}\,\!} 是精细结构常数。

从狄拉克方程直接求解得到的结果是:

其一阶近似就是上面的结果。

相关

  • HSOsub3/subF氟磺酸(化学式:HSO3F),或称氟代硫酸,是通用的强酸之一。其分子结构以HSO3F描述较恰当,可以强调它和硫酸(H2SO4)的关系。HSO3F是四面体型分子。氟磺酸是流动性强的无色液体。它可溶于
  • 醋酸根乙酸盐 (英文: Acetate),俗称醋酸盐,是乙酸所成的盐,含有乙酸根离子CH3COO−,即乙酸去掉羧基质子后形成的阴离子。乙酸根离子的化学式是−,它是一种羧酸根离子,并且是乙酸的共轭碱
  • 磷酸果糖激酶1结构 / ECOD磷酸果糖激酶1(Phosphofructokinase-1;PFK-1;EC 2.7.1.11)是一种糖解作用里一种重要的酶,是一种由4个次单位组成的异位(allosteric)酵素,可受多种活化剂与抑制剂调控。在
  • 运动 (消歧义)运动可以指:
  • 吉布斯能在热力学里,吉布斯能(英语:Gibbs Free Energy),又称吉布斯自由能、吉布斯函数、自由焓,常用英文字母 G {\displaystyle G} 标记。吉布
  • 园田直园田直(そのだ すなお,1913年12月11日-1984年4月2日),日本政治家、外交家、陆军军人。出生于熊本县天草下岛。园田是熊本县议会议员的园田二三四的长子,中学毕业后进入大阪牙科专
  • 战争与和平《战争与和平》(改革前俄语:Война́ и миръ,改革后俄语:Война и мир,转写:Voyná i mir, .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Lin
  • 穆蒙·阿卜杜勒·加尧姆穆蒙·阿卜杜勒·加尧姆(迪维希语:މައުމޫނު ޢަބްދުލް ޤައްޔޫމ‎,1937年12月29日-),马尔代夫独裁者,第3任总统。加尧姆生于马累,毕业于埃及开罗艾资哈尔大学,
  • 阿萨兹·艾哈迈德·乔杜里阿萨兹·艾哈迈德·乔杜里 Aizaz Ahmad Chaudhry就任日期 2017年3月13日纳瓦兹·谢里夫Jalil Abbas Jilani任期 2013年12月18日-2017年3月12日Jalil Abbas Jilani特赫米娜·
  • 热释光热释光(英语:Thermoluminescence, TL)效应,有时也被译作热致光、热发光,是一种冷发光现象:一些晶体(例如矿物质)在被加热时,原来吸收并储存在晶格缺陷中的电磁辐射或其他电离辐射会