精细结构

✍ dations ◷ 2025-09-17 15:50:51 #量子力学,原子物理学

在原子物理学里,因为一阶相对论性效应,与自旋-轨道耦合,而产生的原子谱线分裂,称为精细结构。

非相对论性、不考虑自旋的电子产生的谱线称为粗略结构。类氢原子的粗略结构只与主量子数 n {\displaystyle n\,\!} 有关;更精确的模型,考虑到相对论效应与自旋-轨道效应,能够分解能级的简并,使谱线能更精细地分裂。相对于粗略结构,精细结构是一个 ( Z α ) 2 {\displaystyle (Z\alpha )^{2}\,\!} 效应;其中, Z {\displaystyle Z\,\!} 是原子序数, α {\displaystyle \alpha \,\!} 是精细结构常数。

精细结构修正包括相对论性的动能修正与自旋-轨道修正。整个哈密顿量 H {\displaystyle H\,\!}

其中, H ( 0 ) {\displaystyle H^{(0)}\,\!} 是零摄动哈密顿量, H k i n e t i c {\displaystyle H_{kinetic}\,\!} 是动能修正, H s o {\displaystyle H_{so}\,\!} 是自旋-轨道修正。

经典哈密顿量的动能项目是

其中, T {\displaystyle T\,\!} 是动能, p {\displaystyle p\,\!} 是动量, m {\displaystyle m\,\!} 是质量。

可是,若加入狭义相对论的效应,我们必须使用相对论形式的动能:

其中, c {\displaystyle c\,\!} 是光速。

请注意在这方程的右手边,平方根项目是总相对论性能量, m c 2 {\displaystyle mc^{2}\,\!} 项目是电子的静能量。假设 p m c {\displaystyle p\ll mc\,\!} ,则可以用泰勒级数展开平方根项目:

哈密顿量的动能修正是

将这修正当作一个小摄动,根据量子力学的摄动理论,我们可以计算出相对论性的一阶能量修正 E n ( 1 ) {\displaystyle E_{n}^{(1)}\,\!}

其中, n {\displaystyle n\,\!} 是主量子数,零摄动波函数 ψ n ( 0 ) {\displaystyle \psi _{n}^{(0)}\,\!} 是本征能量为 E n ( 0 ) {\displaystyle E_{n}^{(0)}\,\!} 的本征函数, E n ( 0 ) = Z 2 α 2 m c 2 2 n 2 {\displaystyle E_{n}^{(0)}=-{\frac {Z^{2}\alpha ^{2}mc^{2}}{2n^{2}}}\,\!} ,精细结构常数 α = e 2 4 π ϵ 0 c {\displaystyle \alpha ={\frac {e^{2}}{4\pi \epsilon _{0}\hbar c}}\,\!}

回想零摄动哈密顿量 H ( 0 ) {\displaystyle H^{(0)}\,\!} ψ n ( 0 ) {\displaystyle \psi _{n}^{(0)}\,\!} 的关系方程:

零摄动哈密顿量等于动能加上势能 V {\displaystyle V\,\!}

将势能移到公式右手边:

将这结果代入 E n ( 1 ) {\displaystyle E_{n}^{(1)}\,\!} 的公式:

类氢原子的势能是 V = Z e 2 4 π ϵ 0 r {\displaystyle V={\frac {Ze^{2}}{4\pi \epsilon _{0}r}}\,\!} ;其中, e {\displaystyle e\,\!} 是单位电荷量, r {\displaystyle r\,\!} 是径向距离。经过一番繁琐的运算,可以得到

其中, a 0 = α m c {\displaystyle a_{0}={\frac {\hbar }{\alpha mc}}\,\!} 是玻尔半径, l {\displaystyle l\,\!} 是角量子数。

将这两个结果代入,经过一番运算,可以得到相对论修正:

当我们从标准参考系(原子核的静止参考系;原子核是不动的,电子运动于它环绕着原子核的轨道)改变至电子的静止参考系(电子是不动的,原子核运动于它环绕着电子的轨道)时,我们会遇到自旋-轨道修正。在这状况,运动中的原子核有效地形成了一个电流圈,这会产生磁场 B {\displaystyle \mathbf {B} \,\!} .可是,因为电子的自旋,电子自己拥有磁矩 μ {\displaystyle {\boldsymbol {\mu }}\,\!} 。两个磁矢量 B {\displaystyle \mathbf {B} \,\!} μ {\displaystyle {\boldsymbol {\mu }}\,\!} 共同耦合.这使得哈密顿量内,又添加了一个项目:

其中, ϵ 0 {\displaystyle \epsilon _{0}\,\!} 是真空电容率, L {\displaystyle \mathbf {L} \,\!} 是角动量, S {\displaystyle \mathbf {S} \,\!} 是自旋。

设定总角动量 J = L + S {\displaystyle \mathbf {J} =\mathbf {L} +\mathbf {S} \,\!} 。应用一阶摄动理论,由于 H s o {\displaystyle H_{so}\,\!} J 2 {\displaystyle J^{2}\,\!} L 2 {\displaystyle L^{2}\,\!} S 2 {\displaystyle S^{2}\,\!} ,这四个算符都互相对易。 H ( 0 ) {\displaystyle H^{(0)}\,\!} J 2 {\displaystyle J^{2}\,\!} L 2 {\displaystyle L^{2}\,\!} S 2 {\displaystyle S^{2}\,\!} ,这四个算符也都互相对易。这四个算符的共同本征函数可以被用为零摄动波函数 | n , j , l , s {\displaystyle |n,j,l,s\rangle \,\!} ;其中, j {\displaystyle j\,\!} 是总角量子数, s {\displaystyle s\,\!} 是自旋量子数。那么,经过一番运算,可以得到能级位移

相对论性修正与自旋-轨道修正的总和是

其中, j = l ± 1 / 2 {\displaystyle j=l\pm 1/2\,\!}

j {\displaystyle j\,\!} 的这两个数值分别代入总合方程里,经过一番运算,可以得到同样的结果:

总结,修正后,取至一阶,电子的总能级为,

其中, E 1 ( 0 ) = 13.6   e v {\displaystyle E_{1}^{(0)}=-13.6\ ev\,\!} 是电子的基态能级, α 1 137 {\displaystyle \alpha \approx {\frac {1}{137}}\,\!} 是精细结构常数。

从狄拉克方程直接求解得到的结果是:

其一阶近似就是上面的结果。

相关

  • 百度文库百度文库是百度于2009年11月12日发布的供网友在线分享文档的平台,当时称为“百度知道文档分享平台”。12月8日,百度知道文档分享更名为“百度文库”,并且升级了部分功能。百度
  • 联合国人权事务高级专员办事处联合国人权事务高级专员办事处(简称为“人权高专办”)(英语:Office of the United Nations High Commissioner for Human Rights,缩写为OHCHR)是联合国的下属机构之一,其目的和宗旨
  • 即时消息即时通信(Instant Messaging,简称IM)是一种透过网络进行实时通信的系统,允许两人或多人使用网络即时的传递文字消息、文件、语音与视频交流。通常以网站、电脑软件或移动应用程
  • 克莱斯特贝恩德·海因里希·威廉·冯·克莱斯特(Bernd Heinrich Wilhelm von Kleist,1777年10月18日奥得河畔法兰克福—1811年11月21日万湖),德国诗人、戏剧家、小说家。克莱斯特的家族
  • 奥地利第二共和国面积以下资讯是以2019年估计家用电源国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国内生产总值(国际汇率) 以下资讯是以2016年估计人类发展指数 以下资讯是以2018
  • 迫使捷克斯洛伐克割让更多领土第一次维也纳仲裁裁决是1938年11月2日作为欧洲列强的纳粹德国和意大利王国胁迫斯洛伐克作出领土妥协的裁决。根据这次裁决德国和意大利迫使斯洛伐克将与外喀尔巴阡卢西尼亚(
  • 津南研究院南开大学津南研究院,即南开大学科技成果转化中心津南分中心,是由南开大学与天津市津南区政府共同建设。
  • 奇幻艺术奇幻艺术(Fantasy Art)是一种奇幻类的视觉艺术,原指以魔法或虚构生物等奇幻题材的画作。后不止于实体画作,扩展到以奇幻相关主题的电脑绘图、特殊摄影作品也包含在内。奇幻艺术
  • 罗恩·德桑蒂斯罗纳德·戴恩·德桑蒂斯(Ronald Dion DeSantis;1978年9月14日-)是一位美国律师、海军军官和政治人物,现任佛罗里达州州长。他曾任联邦众议员(2013年-2018年,代表佛罗里达州第6选举
  • 爱德华·迪特尔爱德华·迪特尔(德语:Eduard Dietl,1890年7月21日-1944年6月23日)是一位德国陆军将领,最高军衔为陆军大将,以指挥德军山地猎兵和在挪威战役中攻取纳尔维克(英语:Battles of Narvik)而