精细结构

✍ dations ◷ 2025-04-03 10:39:12 #量子力学,原子物理学

在原子物理学里,因为一阶相对论性效应,与自旋-轨道耦合,而产生的原子谱线分裂,称为精细结构。

非相对论性、不考虑自旋的电子产生的谱线称为粗略结构。类氢原子的粗略结构只与主量子数 n {\displaystyle n\,\!} 有关;更精确的模型,考虑到相对论效应与自旋-轨道效应,能够分解能级的简并,使谱线能更精细地分裂。相对于粗略结构,精细结构是一个 ( Z α ) 2 {\displaystyle (Z\alpha )^{2}\,\!} 效应;其中, Z {\displaystyle Z\,\!} 是原子序数, α {\displaystyle \alpha \,\!} 是精细结构常数。

精细结构修正包括相对论性的动能修正与自旋-轨道修正。整个哈密顿量 H {\displaystyle H\,\!}

其中, H ( 0 ) {\displaystyle H^{(0)}\,\!} 是零摄动哈密顿量, H k i n e t i c {\displaystyle H_{kinetic}\,\!} 是动能修正, H s o {\displaystyle H_{so}\,\!} 是自旋-轨道修正。

经典哈密顿量的动能项目是

其中, T {\displaystyle T\,\!} 是动能, p {\displaystyle p\,\!} 是动量, m {\displaystyle m\,\!} 是质量。

可是,若加入狭义相对论的效应,我们必须使用相对论形式的动能:

其中, c {\displaystyle c\,\!} 是光速。

请注意在这方程的右手边,平方根项目是总相对论性能量, m c 2 {\displaystyle mc^{2}\,\!} 项目是电子的静能量。假设 p m c {\displaystyle p\ll mc\,\!} ,则可以用泰勒级数展开平方根项目:

哈密顿量的动能修正是

将这修正当作一个小摄动,根据量子力学的摄动理论,我们可以计算出相对论性的一阶能量修正 E n ( 1 ) {\displaystyle E_{n}^{(1)}\,\!}

其中, n {\displaystyle n\,\!} 是主量子数,零摄动波函数 ψ n ( 0 ) {\displaystyle \psi _{n}^{(0)}\,\!} 是本征能量为 E n ( 0 ) {\displaystyle E_{n}^{(0)}\,\!} 的本征函数, E n ( 0 ) = Z 2 α 2 m c 2 2 n 2 {\displaystyle E_{n}^{(0)}=-{\frac {Z^{2}\alpha ^{2}mc^{2}}{2n^{2}}}\,\!} ,精细结构常数 α = e 2 4 π ϵ 0 c {\displaystyle \alpha ={\frac {e^{2}}{4\pi \epsilon _{0}\hbar c}}\,\!}

回想零摄动哈密顿量 H ( 0 ) {\displaystyle H^{(0)}\,\!} ψ n ( 0 ) {\displaystyle \psi _{n}^{(0)}\,\!} 的关系方程:

零摄动哈密顿量等于动能加上势能 V {\displaystyle V\,\!}

将势能移到公式右手边:

将这结果代入 E n ( 1 ) {\displaystyle E_{n}^{(1)}\,\!} 的公式:

类氢原子的势能是 V = Z e 2 4 π ϵ 0 r {\displaystyle V={\frac {Ze^{2}}{4\pi \epsilon _{0}r}}\,\!} ;其中, e {\displaystyle e\,\!} 是单位电荷量, r {\displaystyle r\,\!} 是径向距离。经过一番繁琐的运算,可以得到

其中, a 0 = α m c {\displaystyle a_{0}={\frac {\hbar }{\alpha mc}}\,\!} 是玻尔半径, l {\displaystyle l\,\!} 是角量子数。

将这两个结果代入,经过一番运算,可以得到相对论修正:

当我们从标准参考系(原子核的静止参考系;原子核是不动的,电子运动于它环绕着原子核的轨道)改变至电子的静止参考系(电子是不动的,原子核运动于它环绕着电子的轨道)时,我们会遇到自旋-轨道修正。在这状况,运动中的原子核有效地形成了一个电流圈,这会产生磁场 B {\displaystyle \mathbf {B} \,\!} .可是,因为电子的自旋,电子自己拥有磁矩 μ {\displaystyle {\boldsymbol {\mu }}\,\!} 。两个磁矢量 B {\displaystyle \mathbf {B} \,\!} μ {\displaystyle {\boldsymbol {\mu }}\,\!} 共同耦合.这使得哈密顿量内,又添加了一个项目:

其中, ϵ 0 {\displaystyle \epsilon _{0}\,\!} 是真空电容率, L {\displaystyle \mathbf {L} \,\!} 是角动量, S {\displaystyle \mathbf {S} \,\!} 是自旋。

设定总角动量 J = L + S {\displaystyle \mathbf {J} =\mathbf {L} +\mathbf {S} \,\!} 。应用一阶摄动理论,由于 H s o {\displaystyle H_{so}\,\!} J 2 {\displaystyle J^{2}\,\!} L 2 {\displaystyle L^{2}\,\!} S 2 {\displaystyle S^{2}\,\!} ,这四个算符都互相对易。 H ( 0 ) {\displaystyle H^{(0)}\,\!} J 2 {\displaystyle J^{2}\,\!} L 2 {\displaystyle L^{2}\,\!} S 2 {\displaystyle S^{2}\,\!} ,这四个算符也都互相对易。这四个算符的共同本征函数可以被用为零摄动波函数 | n , j , l , s {\displaystyle |n,j,l,s\rangle \,\!} ;其中, j {\displaystyle j\,\!} 是总角量子数, s {\displaystyle s\,\!} 是自旋量子数。那么,经过一番运算,可以得到能级位移

相对论性修正与自旋-轨道修正的总和是

其中, j = l ± 1 / 2 {\displaystyle j=l\pm 1/2\,\!}

j {\displaystyle j\,\!} 的这两个数值分别代入总合方程里,经过一番运算,可以得到同样的结果:

总结,修正后,取至一阶,电子的总能级为,

其中, E 1 ( 0 ) = 13.6   e v {\displaystyle E_{1}^{(0)}=-13.6\ ev\,\!} 是电子的基态能级, α 1 137 {\displaystyle \alpha \approx {\frac {1}{137}}\,\!} 是精细结构常数。

从狄拉克方程直接求解得到的结果是:

其一阶近似就是上面的结果。

相关

  • 志贺氏菌属志贺氏菌属(学名:Shigella)通称志贺菌或者痢疾杆菌,为肠杆菌目肠杆菌科的一属,是一类革兰氏阴性、不活动、不产生孢子的杆状细菌,可引起人和其他哺乳类动物的细菌性痢疾。1897年,由
  • 聚合物有机聚合物(英语:Polymer)是指具有非常大的分子量的化合物,分子间由结构单位(structural unit)、或单体由共价键连接在一起 。 这个聚合物(polymer)是出自于希腊字:polys代表的是多,而
  • 曹文宣曹文宣(1934年5月19日-),四川彭州人,鱼类生物学家,中国科学院院士。曹文宣于1951年考入华西大学生物系。1952年院系调整后转入四川大学生物系,1955年毕业。此后前往武汉中国科学院
  • 布朗尼斯劳·马凌诺斯基布罗尼斯拉夫·卡斯珀·马林诺夫斯基(波兰语:Bronislaw Kasper Malinowski;1884年4月7日-1942年5月16日)是位发迹于英国的波兰人类学家,其建构以客观民族志记载田野调查研究成果的
  • 荷兰国家公共卫生及环境研究院荷兰国家公共卫生及环境研究院(荷兰语:Rijksinstituut voor Volksgezondheid en Milieu,简称RIVM),是隶属于荷兰卫生福利及体育部的一个独立研究机构。国家公共卫生及环境研究院
  • 截角三角化四面体截角三角化四面体是一种凸多面体,共有16个面,由五边形和六边形所组成,其中五边形有四种,每种有三个,并以四面体边和面之关系排列,原属于四面体顶点的部分则为六边形这是构造一个截
  • 坑梓坑梓街道是中国广东省深圳市坪山区下辖的街道,西和南接龙田街道、东及北接惠州市惠阳区秋长街道,面积 24.07 平方公里,常住总人口约 9.1 万人,实际管理人口约 13.63 万人,其中户
  • 徐炳昶徐旭生(1888年-1976年1月4日),名炳昶,字旭生,以字行,笔名虚生,河南唐河人,考古学家、历史学家。徐旭生早年曾就读于河南公立旅京豫学堂,1911年毕业于京师译学馆。后考取公费留学生,1913
  • 2018年青奥会第三届夏季青年奥林匹克运动会(英语:III Summer Youth Olympic Games,西班牙语:III Juegos Olímpicos de la Juventud)于2018年10月6日至18日在阿根廷布宜诺斯艾利斯举行。该青
  • 山东省友好城市或姐妹城市列表参见:中华人民共和国友好城市或姐妹城市列表。