首页 >
最大似然估计
✍ dations ◷ 2025-06-27 14:41:58 #最大似然估计
在统计学中,最大似然估计(英语:maximum likelihood estimation,缩写为MLE),也称极大似然估计、最大概似估计,是用来估计一个概率模型的参数的一种方法。下边的讨论要求读者熟悉概率论中的基本定义,如概率分布、概率密度函数、随机变量、数学期望等。读者还须先熟悉连续实函数的基本技巧,比如使用微分来求一个函数的极值(即极大值或极小值)。
同时,读者须先拥有似然函数的背景知识,以了解最大似然估计的出发点及应用目的。给定一个概率分布
D
{displaystyle D}
,已知其概率密度函数(连续分布)或概率质量函数(离散分布)为
f
D
{displaystyle f_{D}}
,以及一个分布参数
θ
{displaystyle theta }
,我们可以从这个分布中抽出一个具有
n
{displaystyle n}
个值的采样
X
1
,
X
2
,
…
,
X
n
{displaystyle X_{1},X_{2},ldots ,X_{n}}
,利用
f
D
{displaystyle f_{D}}
计算出其似然函数:若
D
{displaystyle D}
是离散分布,
f
θ
{displaystyle f_{theta }}
即是在参数为
θ
{displaystyle theta }
时观测到这一采样的概率。若其是连续分布,
f
θ
{displaystyle f_{theta }}
则为
X
1
,
X
2
,
…
,
X
n
{displaystyle X_{1},X_{2},ldots ,X_{n}}
联合分布的概率密度函数在观测值处的取值。一旦我们获得
X
1
,
X
2
,
…
,
X
n
{displaystyle X_{1},X_{2},ldots ,X_{n}}
,我们就能求得一个关于
θ
{displaystyle theta }
的估计。最大似然估计会寻找关于
θ
{displaystyle theta }
的最可能的值(即,在所有可能的
θ
{displaystyle theta }
取值中,寻找一个值使这个采样的“可能性”最大化)。从数学上来说,我们可以在
θ
{displaystyle theta }
的所有可能取值中寻找一个值使得似然函数取到最大值。这个使可能性最大的
θ
^
{displaystyle {widehat {theta }}}
值即称为
θ
{displaystyle theta }
的最大似然估计。由定义,最大似然估计是样本的函数。考虑一个抛硬币的例子。假设这个硬币正面跟反面轻重不同。我们把这个硬币抛80次(即,我们获取一个采样
x
1
=
H
,
x
2
=
T
,
…
,
x
80
=
T
{displaystyle x_{1}={mbox{H}},x_{2}={mbox{T}},ldots ,x_{80}={mbox{T}}}
并把正面的次数记下来,正面记为H,反面记为T)。并把抛出一个正面的概率记为
p
{displaystyle p}
,抛出一个反面的概率记为
1
−
p
{displaystyle 1-p}
(因此,这里的
p
{displaystyle p}
即相当于上边的
θ
{displaystyle theta }
)。假设我们抛出了49个正面,31个反面,即49次H,31次T。假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出正面的概率分别为
p
=
1
/
3
{displaystyle p=1/3}
,
p
=
1
/
2
{displaystyle p=1/2}
,
p
=
2
/
3
{displaystyle p=2/3}
.这些硬币没有标记,所以我们无法知道哪个是哪个。使用最大似然估计,基于二项分布中的概率质量函数公式,通过这些试验数据(即采样数据),我们可以计算出哪个硬币的可能性最大。这个似然函数取以下三个值中的一个:我们可以看到当
p
^
=
2
/
3
{displaystyle {widehat {p}}=2/3}
时,似然函数取得最大值。
显然地,这硬币的公平性和那种抛出后正面的几率是2/3的硬币是最接近的。这就是
p
{displaystyle p}
的最大似然估计。现在假设例子1中的盒子中有无数个硬币,对于
0
≤
p
≤
1
{displaystyle 0leq pleq 1}
中的任何一个
p
{displaystyle p}
, 都有一个抛出正面概率为
p
{displaystyle p}
的硬币对应,我们来求其似然函数的最大值:其中
0
≤
p
≤
1
{displaystyle 0leq pleq 1}
.
我们可以使用微分法来求极值。方程两边同时对
p
{displaystyle p}
取微分,并使其为零。其解为
p
=
0
{displaystyle p=0}
,
p
=
1
{displaystyle p=1}
,以及
p
=
49
/
80
{displaystyle p=49/80}
.使可能性最大的解显然是
p
=
49
/
80
{displaystyle p=49/80}
(因为
p
=
0
{displaystyle p=0}
和
p
=
1
{displaystyle p=1}
这两个解会使可能性为零)。因此我们说最大似然估计值为
p
^
=
49
/
80
{displaystyle {widehat {p}}=49/80}
.这个结果很容易一般化。只需要用一个字母
t
{displaystyle t}
代替49用以表达伯努利试验中的被观察数据(即样本)的“成功”次数,用另一个字母
n
{displaystyle n}
代表伯努利试验的次数即可。使用完全同样的方法即可以得到最大似然估计值:对于任何成功次数为
t
{displaystyle t}
,试验总数为
n
{displaystyle n}
的伯努利试验。最常见的连续概率分布是正态分布,其概率密度函数如下:现在有
n
{displaystyle n}
个正态随机变量的采样点,要求的是一个这样的正态分布,这些采样点分布到这个正态分布可能性最大(也就是概率密度积最大,每个点更靠近中心点),其
n
{displaystyle n}
个正态随机变量的采样的对应密度函数(假设其独立并服从同一分布)为:或:这个分布有两个参数:
μ
,
σ
2
{displaystyle mu ,sigma ^{2}}
.有人可能会担心两个参数与上边的讨论的例子不同,上边的例子都只是在一个参数上对可能性进行最大化。实际上,在两个参数上的求最大值的方法也差不多:只需要分别把可能性
L
(
μ
,
σ
)
=
f
(
x
1
,
,
…
,
x
n
∣
μ
,
σ
2
)
{displaystyle {mbox{L}}(mu ,sigma )=f(x_{1},,ldots ,x_{n}mid mu ,sigma ^{2})}
在两个参数上最大化即可。当然这比一个参数麻烦一些,但是一点也不复杂。使用上边例子同样的符号,我们有
θ
=
(
μ
,
σ
2
)
{displaystyle theta =(mu ,sigma ^{2})}
.最大化一个似然函数同最大化它的自然对数是等价的。因为自然对数log是一个连续且在似然函数的值域内严格递增的上凸函数。求对数通常能够一定程度上简化运算,比如在这个例子中可以看到:这个方程的解是
μ
^
=
x
¯
=
∑
i
=
1
n
x
i
/
n
{displaystyle {widehat {mu }}={bar {x}}=sum _{i=1}^{n}x_{i}/n}
.这的确是这个函数的最大值,因为它是
μ
{displaystyle mu }
里头惟一的一阶导数等于零的点并且二阶导数严格小于零。同理,我们对
σ
{displaystyle sigma }
求导,并使其为零。这个方程的解是
σ
^
2
=
∑
i
=
1
n
(
x
i
−
μ
^
)
2
/
n
{displaystyle {widehat {sigma }}^{2}=sum _{i=1}^{n}(x_{i}-{widehat {mu }})^{2}/n}
.因此,其关于
θ
=
(
μ
,
σ
2
)
{displaystyle theta =(mu ,sigma ^{2})}
的最大似然估计为:如果
θ
^
{displaystyle {hat {theta }}}
是
θ
{displaystyle theta }
的一个最大似然估计,那么
α
=
g
(
θ
)
{displaystyle alpha =g(theta )}
的最大似然估计是
α
^
=
g
(
θ
^
)
{displaystyle {hat {alpha }}=g({hat {theta }})}
。函数g无需是一个双射。最大似然估计函数在采样样本总数趋于无穷的时候达到最小方差(其证明可见于Cramer-Rao lower bound)。当最大似然估计非偏时,等价的,在极限的情况下我们可以称其有最小的均方差。
对于独立的观察来说,最大似然估计函数经常趋于正态分布。最大似然估计的偏差是非常重要的。考虑这样一个例子,标有1到n的n张票放在一个盒子中。从盒子中随机抽取票。如果n是未知的话,那么n的最大似然估计值就是抽出的票上标有的n,尽管其期望值的只有
(
n
+
1
)
/
2
{displaystyle (n+1)/2}
.为了估计出最高的n值,我们能确定的只能是n值不小于抽出来的票上的值。最大似然估计最早是由罗纳德·费雪在1912年至1922年间推荐、分析并大范围推广的。(虽然以前高斯、拉普拉斯、T. N. Thiele和F. Y. 埃奇沃思也使用过)。 许多作者都提供了最大似然估计发展的回顾。大部分的最大似然估计理论都在贝叶斯统计中第一次得到发展,并被后来的作者简化。
相关
- 结节病结节病(英文:Sarcoidosis,来自单词sarc,“肉体”的意思,并加上后缀-oid表示“像..似的”或“有质量的”,与后缀-osis,“疾病或非正常情况”的意思)英文中有时也被叫做sarcoid(简称),贝
- 肝脏肝脏(英语:liver)为脊椎动物体内的一种器官,以代谢功能为主,并扮演着除去毒素,储存糖原(肝糖),分泌蛋白质合成等重要角色。肝脏也会制造胆汁。在医学用字上,常以拉丁语字首hepato-或he
- 碘缺乏病碘缺乏病(IDD)是因缺乏摄入碘元素而造成的病态。这种病症通常出现于远离海洋的内陆地区的人口,因海产是人体摄取碘的主要来源,以及内陆地区土壤含量不足。但并不代表沿海地区就
- EPO1BUY, 1CN4, 1EER· hormone activity · protein binding· regulation of transcription from RNA polymerase II promoter · signal transduction · embryo implant
- 芝麻芝麻(学名:Sesamum indicum),别名胡麻、脂麻、油麻,是胡麻科胡麻属植物。虽然它的近亲在非洲出现,但品种的自然起源仍然未知。它遍布世界上的热带地区。在温带地区也有种植,比如中
- 斯德哥尔摩综合征斯德哥尔摩综合征(英语:Stockholm syndrome;瑞典语:Stockholmssyndromet)又称为人质情结、人质综合征,是一种心理学现象,是指被害者对于加害者产生情感,同情加害者、认同加害者的某
- 拇指拇指,又称大拇指,是第一只手指,也是五个指头中最强壮的一个,长度与小指相若。
- 约翰·罗杰斯·希尔勒约翰·罗杰斯·希尔勒(又译作约翰·罗杰斯·塞尔;John Rogers Searle,1932年7月31日-),出生于美国丹佛。是一位在加州大学伯克利分校执教的哲学教授。他对语言哲学、心灵哲学和理
- 性伦理性伦理(英语:Sexual ethics)又称为性道德,或作性伦理学,是研究“人类性行为”或人类与性相关之“行为表达”的伦理学分支。性伦理试图从社会、文化和哲学的角度来理解或评估人际
- 史蒂芬·杰伊·古尔德史蒂芬·杰伊·古尔德(英语:Stephen Jay Gould,1941年9月10日-2002年5月20日)是一名美国古生物学家、演化生物学家,科学史学家与科普作家,职业生涯中大多在哈佛大学担任教职,并曾在