最大似然估计

✍ dations ◷ 2025-01-22 21:00:02 #最大似然估计
在统计学中,最大似然估计(英语:maximum likelihood estimation,缩写为MLE),也称极大似然估计、最大概似估计,是用来估计一个概率模型的参数的一种方法。下边的讨论要求读者熟悉概率论中的基本定义,如概率分布、概率密度函数、随机变量、数学期望等。读者还须先熟悉连续实函数的基本技巧,比如使用微分来求一个函数的极值(即极大值或极小值)。 同时,读者须先拥有似然函数的背景知识,以了解最大似然估计的出发点及应用目的。给定一个概率分布 D {displaystyle D} ,已知其概率密度函数(连续分布)或概率质量函数(离散分布)为 f D {displaystyle f_{D}} ,以及一个分布参数 θ {displaystyle theta } ,我们可以从这个分布中抽出一个具有 n {displaystyle n} 个值的采样 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} ,利用 f D {displaystyle f_{D}} 计算出其似然函数:若 D {displaystyle D} 是离散分布, f θ {displaystyle f_{theta }} 即是在参数为 θ {displaystyle theta } 时观测到这一采样的概率。若其是连续分布, f θ {displaystyle f_{theta }} 则为 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} 联合分布的概率密度函数在观测值处的取值。一旦我们获得 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} ,我们就能求得一个关于 θ {displaystyle theta } 的估计。最大似然估计会寻找关于 θ {displaystyle theta } 的最可能的值(即,在所有可能的 θ {displaystyle theta } 取值中,寻找一个值使这个采样的“可能性”最大化)。从数学上来说,我们可以在 θ {displaystyle theta } 的所有可能取值中寻找一个值使得似然函数取到最大值。这个使可能性最大的 θ ^ {displaystyle {widehat {theta }}} 值即称为 θ {displaystyle theta } 的最大似然估计。由定义,最大似然估计是样本的函数。考虑一个抛硬币的例子。假设这个硬币正面跟反面轻重不同。我们把这个硬币抛80次(即,我们获取一个采样 x 1 = H , x 2 = T , … , x 80 = T {displaystyle x_{1}={mbox{H}},x_{2}={mbox{T}},ldots ,x_{80}={mbox{T}}} 并把正面的次数记下来,正面记为H,反面记为T)。并把抛出一个正面的概率记为 p {displaystyle p} ,抛出一个反面的概率记为 1 − p {displaystyle 1-p} (因此,这里的 p {displaystyle p} 即相当于上边的 θ {displaystyle theta } )。假设我们抛出了49个正面,31个反面,即49次H,31次T。假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出正面的概率分别为 p = 1 / 3 {displaystyle p=1/3} , p = 1 / 2 {displaystyle p=1/2} , p = 2 / 3 {displaystyle p=2/3} .这些硬币没有标记,所以我们无法知道哪个是哪个。使用最大似然估计,基于二项分布中的概率质量函数公式,通过这些试验数据(即采样数据),我们可以计算出哪个硬币的可能性最大。这个似然函数取以下三个值中的一个:我们可以看到当 p ^ = 2 / 3 {displaystyle {widehat {p}}=2/3} 时,似然函数取得最大值。 显然地,这硬币的公平性和那种抛出后正面的几率是2/3的硬币是最接近的。这就是 p {displaystyle p} 的最大似然估计。现在假设例子1中的盒子中有无数个硬币,对于 0 ≤ p ≤ 1 {displaystyle 0leq pleq 1} 中的任何一个 p {displaystyle p} , 都有一个抛出正面概率为 p {displaystyle p} 的硬币对应,我们来求其似然函数的最大值:其中 0 ≤ p ≤ 1 {displaystyle 0leq pleq 1} . 我们可以使用微分法来求极值。方程两边同时对 p {displaystyle p} 取微分,并使其为零。其解为 p = 0 {displaystyle p=0} , p = 1 {displaystyle p=1} ,以及 p = 49 / 80 {displaystyle p=49/80} .使可能性最大的解显然是 p = 49 / 80 {displaystyle p=49/80} (因为 p = 0 {displaystyle p=0} 和 p = 1 {displaystyle p=1} 这两个解会使可能性为零)。因此我们说最大似然估计值为 p ^ = 49 / 80 {displaystyle {widehat {p}}=49/80} .这个结果很容易一般化。只需要用一个字母 t {displaystyle t} 代替49用以表达伯努利试验中的被观察数据(即样本)的“成功”次数,用另一个字母 n {displaystyle n} 代表伯努利试验的次数即可。使用完全同样的方法即可以得到最大似然估计值:对于任何成功次数为 t {displaystyle t} ,试验总数为 n {displaystyle n} 的伯努利试验。最常见的连续概率分布是正态分布,其概率密度函数如下:现在有 n {displaystyle n} 个正态随机变量的采样点,要求的是一个这样的正态分布,这些采样点分布到这个正态分布可能性最大(也就是概率密度积最大,每个点更靠近中心点),其 n {displaystyle n} 个正态随机变量的采样的对应密度函数(假设其独立并服从同一分布)为:或:这个分布有两个参数: μ , σ 2 {displaystyle mu ,sigma ^{2}} .有人可能会担心两个参数与上边的讨论的例子不同,上边的例子都只是在一个参数上对可能性进行最大化。实际上,在两个参数上的求最大值的方法也差不多:只需要分别把可能性 L ( μ , σ ) = f ( x 1 , , … , x n ∣ μ , σ 2 ) {displaystyle {mbox{L}}(mu ,sigma )=f(x_{1},,ldots ,x_{n}mid mu ,sigma ^{2})} 在两个参数上最大化即可。当然这比一个参数麻烦一些,但是一点也不复杂。使用上边例子同样的符号,我们有 θ = ( μ , σ 2 ) {displaystyle theta =(mu ,sigma ^{2})} .最大化一个似然函数同最大化它的自然对数是等价的。因为自然对数log是一个连续且在似然函数的值域内严格递增的上凸函数。求对数通常能够一定程度上简化运算,比如在这个例子中可以看到:这个方程的解是 μ ^ = x ¯ = ∑ i = 1 n x i / n {displaystyle {widehat {mu }}={bar {x}}=sum _{i=1}^{n}x_{i}/n} .这的确是这个函数的最大值,因为它是 μ {displaystyle mu } 里头惟一的一阶导数等于零的点并且二阶导数严格小于零。同理,我们对 σ {displaystyle sigma } 求导,并使其为零。这个方程的解是 σ ^ 2 = ∑ i = 1 n ( x i − μ ^ ) 2 / n {displaystyle {widehat {sigma }}^{2}=sum _{i=1}^{n}(x_{i}-{widehat {mu }})^{2}/n} .因此,其关于 θ = ( μ , σ 2 ) {displaystyle theta =(mu ,sigma ^{2})} 的最大似然估计为:如果 θ ^ {displaystyle {hat {theta }}} 是 θ {displaystyle theta } 的一个最大似然估计,那么 α = g ( θ ) {displaystyle alpha =g(theta )} 的最大似然估计是 α ^ = g ( θ ^ ) {displaystyle {hat {alpha }}=g({hat {theta }})} 。函数g无需是一个双射。最大似然估计函数在采样样本总数趋于无穷的时候达到最小方差(其证明可见于Cramer-Rao lower bound)。当最大似然估计非偏时,等价的,在极限的情况下我们可以称其有最小的均方差。 对于独立的观察来说,最大似然估计函数经常趋于正态分布。最大似然估计的偏差是非常重要的。考虑这样一个例子,标有1到n的n张票放在一个盒子中。从盒子中随机抽取票。如果n是未知的话,那么n的最大似然估计值就是抽出的票上标有的n,尽管其期望值的只有 ( n + 1 ) / 2 {displaystyle (n+1)/2} .为了估计出最高的n值,我们能确定的只能是n值不小于抽出来的票上的值。最大似然估计最早是由罗纳德·费雪在1912年至1922年间推荐、分析并大范围推广的。(虽然以前高斯、拉普拉斯、T. N. Thiele和F. Y. 埃奇沃思也使用过)。 许多作者都提供了最大似然估计发展的回顾。大部分的最大似然估计理论都在贝叶斯统计中第一次得到发展,并被后来的作者简化。

相关

  • 巨细胞病毒巨细胞病毒(拉丁语:Cytomegalovirus,简称CMV)是一种疱疹病毒。感染人类的品种称 human CMV (HCMV) 或Human herpesvirus-5 (HHV-5),是巨细胞病毒中研究最深入的在人类和哺乳动物
  • 基因工程基因工程(英语:genetic engineering,又称为遗传工程、转基因、基因修饰)是一种使用生物技术直接操纵有机体基因组、用于改变细胞的遗传物质的技术。包括了同一物种和跨物种的基
  • 银耳纲Cystofilobasidiales 线黑粉菌目 Filobasidiales 银耳目 Tremellales银耳纲(Tremellomycetes)为双形性真菌,且某些物种有凝胶状的子实体或囊状的桶孔覆垫。
  • 免疫分析免疫分析是一种利用抗体或抗原对某种溶液中的大分子或小分子进行测量的生物化学实验技术。免疫分析既可以定性确认某种大分子或小分子是否存在于受测溶液中,也可以定量测量某
  • 故事板分镜或分镜脚本,又称故事板(storyboard),是指电影、动画、电视剧、广告、音乐录影带等各种影像媒体,在实际拍摄或绘制之前,以故事图格的方式来说明影像的构成,将连续画面以一次运镜
  • 性传染病性感染疾病(英语:Sexually transmitted infections, STI),又称性病(英语:Venereal Disease, VD)或花柳病,描述因性行为(指阴道性行为、肛交和口交)而传播的疾病。大多数的性感染疾病一
  • 伦敦数学学会伦敦数学学会(London Mathematical Society)是英格兰的主要数学组织。此学会创于1865年1月16日,首任主席由奥古斯都·德·摩根出任。其聚会最早在伦敦大学学院举行,但随后便迁至
  • 滑液囊滑液囊(synovial bursa),又称滑囊或黏液囊,是由滑液膜(英语:Synovial membrane)包围的小形囊状构造,内有黏性液体,稠度类似“生蛋白”,常位于关节处,关节活动时可作为骨骼、肌腱、肌肉
  • 抗磷脂抗磷脂综合征或抗磷脂抗体综合征(英语:antiphospholipid syndrome 或 英语:antiphospholipid antibody syndrome,缩写为APS或APLS)是由于人体免疫系统对细胞膜成分磷脂发生异常的
  • 芭芭拉·麦克林托克芭芭拉·麦克林托克(英语:Barbara McClintock,1902年6月16日-1992年9月2日),美国著名女性细胞遗传学家。1983年获得诺贝尔生理学或医学奖,是首位没有共同得奖者、单独获得该奖项的