拉伐尔喷管

✍ dations ◷ 2025-12-02 18:12:13 #喷气发动机,流体力学,天体物理学

拉伐尔喷管(, 亦称渐缩渐阔喷管,convergent-divergent nozzle、CD nozzle或con-di nozzle)是一个中间收缩、不对称沙漏状的管子。借由将流体的热能转化为动能,可将通过它的热压缩气体加速到超音速。气体在截面积最小处恰好达到音速。被广泛用作蒸汽涡轮机及火箭发动机喷管,亦可见于超音速喷气发动机。类似的流动性质已经应用于天体物理学中的喷气流。

公元1888年,由瑞典发明家Gustaf de Laval(英语:Gustaf de Laval)开发,并使用在蒸汽涡轮机上。

最早被罗伯特·戈达德用作火箭发动机,大多数使用高温燃烧气体的现代火箭发动机都使用拉伐尔喷管。

其操作有赖于亚音速和超音速气体的不同特性。 如果由于质量流量不变而管道变窄,则亚音速气体流速将会增加。 通过拉伐尔喷管的气流是等熵的(气体熵几乎不变)。在亚音速流中,气体是不可压缩的,声音会通过它传播。 在横截面面积最小的喉部,气体速度局部达到声速(马赫数= 1.0),这种状况称为阻流。 随着喷管横截面积的增加,气体开始膨胀,气流加速到超音速,在那里声波不会通过气体向后传播(马赫数> 1.0)。

只有在通过喷管的压力和质量流量足以达到音速的状况下,拉伐尔喷管会在喉部产生阻流现象。若是没有达到条件,则不会有超音速气流产生,此时运作方式较接近文氏管。这要求喷管的入口压力始终显著高于环境压力(亦即喷流的静止压力必须高于环境压力)。

另外,喷管出口处的气体压力不能太低。出口压力虽然可以低于其排出的环境压力,但是如果低得太超过,那么气流将不再为超音速,或者将在喷管的扩张部剥离,形成喷管内的紊流,产生侧向推力并可能损坏喷管。

实务上,出口处超音速气流压力必须高于约2-3倍环境压力,气体才能离开喷管。

通过拉伐尔喷管的气流分析涉及许多概念和假设:

气体以亚音速进入喷管,随着喷管收缩,气体被迫加速,直到截面积最小的喷管喉部时,恰好达到音速。扩张部从喉部开始,截面积逐渐加大,气体跟着膨胀,渐渐超越音速。可用以下等式来计算排出气体的线速度:

一些典型火箭发动机推进剂的排气速度 v e {\displaystyle v_{e}} 值如下:

值得注意的一点是,基于排出气体表现为理想气体的假设, v e {\displaystyle v_{e}} 有时也被称作理想排气速度。

使用上述等式的举例如下:假定推进剂燃烧后排出气体:进入喷管的绝对压力 p {\displaystyle p} = 7.0MPa,并在绝对压力 p e {\displaystyle p_{e}} = 0.1MPa下离开火箭排气口。在绝对温度 T {\displaystyle T} = 3500K下,具有等熵膨胀因子γ= 1.22和莫耳质量 M {\displaystyle M} = 22kg / kmol。 使用上述公式计算可得出排气速度 v e {\displaystyle v_{e}} = 2802 m / s(2.80 km / s),这与上述典型值一致。

在阅读技术文献时可能感到困惑,因为许多作者并没有解释他们是使用理想气体常数 R {\displaystyle R} ,或者他们使用气体定律常数 R s {\displaystyle R_{s}} ,这只适用于特定气体。 两个常数之间的关系是 R s {\displaystyle R_{s}} = R {\displaystyle R} / M {\displaystyle M}

音速是一个与密度有关的量。流体速度与音速的比值被称为马赫数:

1) M = c a {\displaystyle M={\frac {c}{a}}}

由欧拉方程和理想气体状态方程式可得出:

d p / d ρ = a 2 {\displaystyle dp/d\rho =a^{2}} :

c d c d x = 1 ρ d p d x = 1 ρ d p d ρ d ρ d x = a 2 ρ d ρ d x {\displaystyle c{\frac {dc}{dx}}=-{\frac {1}{\rho }}{\frac {dp}{dx}}=-{\frac {1}{\rho }}{\frac {dp}{d\rho }}{\frac {d\rho }{dx}}=-{\frac {a^{2}}{\rho }}{\frac {d\rho }{dx}}} ,

2) 1 ρ d ρ d x = M 2 1 c d c d x {\displaystyle {\frac {1}{\rho }}{\frac {d\rho }{dx}}=-M^{2}{\frac {1}{c}}{\frac {dc}{dx}}} ,

方程(2)表明,沿着流线方向,气体密度变化和速度变化是成正比的,系数为 M 2 {\displaystyle M^{2}} 。由此可得,亚音速状态下,密度变化小于速度变化;相反,超音速状态下,密度变化大于速度变化。

然后根据连续性假设,

ρ c A = c o n s t {\displaystyle \rho cA={\mathsf {const}}} ,

ln ρ + ln c + ln A = ln ( c o n s t ) {\displaystyle \ln \rho +\ln c+\ln A=\ln({\mathsf {const}})} ,

d ρ ρ + d c c + d A A = 0 {\displaystyle {\frac {d\rho }{\rho }}+{\frac {dc}{c}}+{\frac {dA}{A}}=0} .

沿流线求导,有

3) 1 c d c d x = 1 M 2 1 1 A d A d x {\displaystyle {\frac {1}{c}}{\frac {dc}{dx}}={\frac {1}{M^{2}-1}}{\frac {1}{A}}{\frac {dA}{dx}}} .

如果把截面积A(x)当作已知,流速c(x),马赫数M(x)当作未知,由方程(3)就可对流动状况进行讨论。如果相对流体进行加速,则必须dc/dx > 0,由(3)

相关

  • 突破聆听突破倡议(Breakthrough Initiatives)是一个由俄国科技业富豪尤里·米尔纳于2015年创建的计划,准备在十年内,投资1亿美金,寻找外星生命。 整个计划分为几个项目。突破聆听项目将会
  • 戴维森-革末实验戴维森-革末实验是克林顿·戴维森与雷斯特·革末设计与研究成功的一个量子力学实验。他们用低速电子入射于镍晶体,取得电子的衍射图案。发表于 1927 年,这实验为德布罗意假说(
  • 国花国花是指一个国家用来作为自己国家象征的花。国花一般对一个国家的文化别具意义,可能是当地特别著名的花卉。花]](代表日本皇室)||||||中华民国的国花是梅花。梅有三蕾五瓣,代表
  • 穆阿台迪德穆阿台迪德(Abu'l-Abbas ibn al-Muwaffaq,尊称al-Mu'tadid bi-Allah (阿拉伯语:المعتضد بالله‎, "Seeking Support in God",857年-902年4月5日),伊斯兰教第三十四代哈
  • 汉字树汉字树,是以树状结构重建汉字部首表的一套方法,目的是要解决汉字部首缺乏系统化的问题。东汉许慎《说文解字》将汉字基本符号进行归纳,共归纳出540个部首,清朝吴任臣《字汇补》
  • 文致和文致和(荷兰语:Franciscus Hubertus Schraven, C.M.,1873年10月13日-1937年10月9日),荷兰遣使会士,天主教直隶西南宗座代牧区宗座代牧。1873年10月13日,文致和出生于荷兰Lottum 。18
  • 热释光测年法热释光测年法,或称热萤光定年法,是利用热释光效应(thermoluminescence)测量含有结晶体的矿物或烧制文物,自加热或烧制后经过时间的一种方法。利用热释光效应,可以根据样本所释放光
  • 格里菲斯·J·格里菲斯格里菲斯·詹金斯·格里菲斯(英语:Griffith Jenkins Griffith;1850年1月4日-1919年7月6日),是一位威尔士裔美国企业家和慈善家,捐赠12.20平方公里的土地给洛杉矶市政府而成立格里斐
  • autores.uyautores.uy是一个关于作者的在线数据库。由知识共享(CC)的乌拉圭部门创建及维护。该数据库得到了乌拉圭国家图书馆,乌拉圭立法权力图书馆(西班牙语:Biblioteca del Poder Legisla
  • 卡尔·奥古斯特 (萨克森-魏玛-艾森纳赫大公世子)卡尔·奥古斯特(全名: Wilhelm Nikolaus Alexander Michael Bernhard Heinrich Friedrich Stefan,1844年7月31日-1894年11月20日),萨克森-魏玛-艾森纳赫大公世子。卡尔·奥古斯特