拉伐尔喷管

✍ dations ◷ 2025-06-30 19:53:49 #喷气发动机,流体力学,天体物理学

拉伐尔喷管(, 亦称渐缩渐阔喷管,convergent-divergent nozzle、CD nozzle或con-di nozzle)是一个中间收缩、不对称沙漏状的管子。借由将流体的热能转化为动能,可将通过它的热压缩气体加速到超音速。气体在截面积最小处恰好达到音速。被广泛用作蒸汽涡轮机及火箭发动机喷管,亦可见于超音速喷气发动机。类似的流动性质已经应用于天体物理学中的喷气流。

公元1888年,由瑞典发明家Gustaf de Laval(英语:Gustaf de Laval)开发,并使用在蒸汽涡轮机上。

最早被罗伯特·戈达德用作火箭发动机,大多数使用高温燃烧气体的现代火箭发动机都使用拉伐尔喷管。

其操作有赖于亚音速和超音速气体的不同特性。 如果由于质量流量不变而管道变窄,则亚音速气体流速将会增加。 通过拉伐尔喷管的气流是等熵的(气体熵几乎不变)。在亚音速流中,气体是不可压缩的,声音会通过它传播。 在横截面面积最小的喉部,气体速度局部达到声速(马赫数= 1.0),这种状况称为阻流。 随着喷管横截面积的增加,气体开始膨胀,气流加速到超音速,在那里声波不会通过气体向后传播(马赫数> 1.0)。

只有在通过喷管的压力和质量流量足以达到音速的状况下,拉伐尔喷管会在喉部产生阻流现象。若是没有达到条件,则不会有超音速气流产生,此时运作方式较接近文氏管。这要求喷管的入口压力始终显著高于环境压力(亦即喷流的静止压力必须高于环境压力)。

另外,喷管出口处的气体压力不能太低。出口压力虽然可以低于其排出的环境压力,但是如果低得太超过,那么气流将不再为超音速,或者将在喷管的扩张部剥离,形成喷管内的紊流,产生侧向推力并可能损坏喷管。

实务上,出口处超音速气流压力必须高于约2-3倍环境压力,气体才能离开喷管。

通过拉伐尔喷管的气流分析涉及许多概念和假设:

气体以亚音速进入喷管,随着喷管收缩,气体被迫加速,直到截面积最小的喷管喉部时,恰好达到音速。扩张部从喉部开始,截面积逐渐加大,气体跟着膨胀,渐渐超越音速。可用以下等式来计算排出气体的线速度:

一些典型火箭发动机推进剂的排气速度 v e {\displaystyle v_{e}} 值如下:

值得注意的一点是,基于排出气体表现为理想气体的假设, v e {\displaystyle v_{e}} 有时也被称作理想排气速度。

使用上述等式的举例如下:假定推进剂燃烧后排出气体:进入喷管的绝对压力 p {\displaystyle p} = 7.0MPa,并在绝对压力 p e {\displaystyle p_{e}} = 0.1MPa下离开火箭排气口。在绝对温度 T {\displaystyle T} = 3500K下,具有等熵膨胀因子γ= 1.22和莫耳质量 M {\displaystyle M} = 22kg / kmol。 使用上述公式计算可得出排气速度 v e {\displaystyle v_{e}} = 2802 m / s(2.80 km / s),这与上述典型值一致。

在阅读技术文献时可能感到困惑,因为许多作者并没有解释他们是使用理想气体常数 R {\displaystyle R} ,或者他们使用气体定律常数 R s {\displaystyle R_{s}} ,这只适用于特定气体。 两个常数之间的关系是 R s {\displaystyle R_{s}} = R {\displaystyle R} / M {\displaystyle M}

音速是一个与密度有关的量。流体速度与音速的比值被称为马赫数:

1) M = c a {\displaystyle M={\frac {c}{a}}}

由欧拉方程和理想气体状态方程式可得出:

d p / d ρ = a 2 {\displaystyle dp/d\rho =a^{2}} :

c d c d x = 1 ρ d p d x = 1 ρ d p d ρ d ρ d x = a 2 ρ d ρ d x {\displaystyle c{\frac {dc}{dx}}=-{\frac {1}{\rho }}{\frac {dp}{dx}}=-{\frac {1}{\rho }}{\frac {dp}{d\rho }}{\frac {d\rho }{dx}}=-{\frac {a^{2}}{\rho }}{\frac {d\rho }{dx}}} ,

2) 1 ρ d ρ d x = M 2 1 c d c d x {\displaystyle {\frac {1}{\rho }}{\frac {d\rho }{dx}}=-M^{2}{\frac {1}{c}}{\frac {dc}{dx}}} ,

方程(2)表明,沿着流线方向,气体密度变化和速度变化是成正比的,系数为 M 2 {\displaystyle M^{2}} 。由此可得,亚音速状态下,密度变化小于速度变化;相反,超音速状态下,密度变化大于速度变化。

然后根据连续性假设,

ρ c A = c o n s t {\displaystyle \rho cA={\mathsf {const}}} ,

ln ρ + ln c + ln A = ln ( c o n s t ) {\displaystyle \ln \rho +\ln c+\ln A=\ln({\mathsf {const}})} ,

d ρ ρ + d c c + d A A = 0 {\displaystyle {\frac {d\rho }{\rho }}+{\frac {dc}{c}}+{\frac {dA}{A}}=0} .

沿流线求导,有

3) 1 c d c d x = 1 M 2 1 1 A d A d x {\displaystyle {\frac {1}{c}}{\frac {dc}{dx}}={\frac {1}{M^{2}-1}}{\frac {1}{A}}{\frac {dA}{dx}}} .

如果把截面积A(x)当作已知,流速c(x),马赫数M(x)当作未知,由方程(3)就可对流动状况进行讨论。如果相对流体进行加速,则必须dc/dx > 0,由(3)

相关

  • 强直性脊柱炎强直性脊柱炎(拉丁文:spondylitis ankylosans,其中spondylitis原为希腊文脊柱炎之意,ankylosans原系希腊文强直之意),又称僵直性脊椎炎,在欧陆亦称此病为白赫铁列夫症(Morbus Bechte
  • 子宫切除术子宫切除术(hysterectomy)指的通常是由妇产科医生进行的切除子宫的手术。它可分为整个(包括整个子宫和子宫颈)或部分切除。在普遍的情况下,切除卵巢需要与切除子宫手术同时进行。
  • 矩量法在统计学中,矩估计(英语:method of moments)是估计总体参数的方法。首先推导涉及感兴趣的参数的总体矩(即所考虑的随机变量的幂的期望值)的方程。然后取出一个样本并从这个样本估
  • 卧龙岗市沃隆冈(Wollongong,或译乌龙岗、伍伦贡)地处澳大利亚新南威尔士州东海岸的一座工业城,位于悉尼南82公里(约45分钟车程),市辖境有684平方公里,属新南威尔士州的伊拉瓦拉地区。从沃隆
  • 猜纳府猜纳府(泰语:จังหวัดชัยนาท,皇家转写:Changwat Chai Nat,泰语发音:)是泰国中部的一个府。猜纳府的名称之泰文意为“胜利府”,它是素可泰王国时代的前哨城府,因为每次与
  • 美军参谋长联席会议参谋首长联席会议(英语:Joint Chiefs of Staff),是美国军队陆海空各军种指挥官组成的机构。其机能与英联邦国家的参谋长委员会和部分国家的参谋部相类似,主要职能是三军之间的协
  • 1966年纽约烟雾事件1966年纽约市烟雾事件是重大空气污染事件,在此期间,纽约市空气中几种有毒污染物的含量都达到损害人体的程度。此次烟雾事件从11月23日持续至26日,恰好是当年的感恩节假期期间。
  • 雅英赵慈英(韩语:조자영,1991年5月26日-),艺名为雅英(朝鲜语:아영 ,英语:Ayoung),韩国女歌手及演员,Happy Face娱乐旗下女子组合Dal★Shabet前成员,在队中担任领Rapper、副唱、门面,在2011年1
  • 旅行者金唱片内容旅行者金唱片上刻录了116幅图片和各种自然界的声音,例如海浪、风、雷及动物所发出的声音,包括鸟类和鲸鱼。此外,还有来自不同文化的歌曲,用59种不同的语言讲的问候语,以及来自时
  • 周昌 (清朝)周昌,中国清朝官员,盛京辽阳州人,康熙十二年(1673年)进士。二十三年(1684年)由汀漳道调任福建分巡台湾厦门道,是首位担任该职的官员。康熙二十五年(1686年)任满回京。周昌任内曾与台湾