拉伐尔喷管

✍ dations ◷ 2025-11-29 18:13:01 #喷气发动机,流体力学,天体物理学

拉伐尔喷管(, 亦称渐缩渐阔喷管,convergent-divergent nozzle、CD nozzle或con-di nozzle)是一个中间收缩、不对称沙漏状的管子。借由将流体的热能转化为动能,可将通过它的热压缩气体加速到超音速。气体在截面积最小处恰好达到音速。被广泛用作蒸汽涡轮机及火箭发动机喷管,亦可见于超音速喷气发动机。类似的流动性质已经应用于天体物理学中的喷气流。

公元1888年,由瑞典发明家Gustaf de Laval(英语:Gustaf de Laval)开发,并使用在蒸汽涡轮机上。

最早被罗伯特·戈达德用作火箭发动机,大多数使用高温燃烧气体的现代火箭发动机都使用拉伐尔喷管。

其操作有赖于亚音速和超音速气体的不同特性。 如果由于质量流量不变而管道变窄,则亚音速气体流速将会增加。 通过拉伐尔喷管的气流是等熵的(气体熵几乎不变)。在亚音速流中,气体是不可压缩的,声音会通过它传播。 在横截面面积最小的喉部,气体速度局部达到声速(马赫数= 1.0),这种状况称为阻流。 随着喷管横截面积的增加,气体开始膨胀,气流加速到超音速,在那里声波不会通过气体向后传播(马赫数> 1.0)。

只有在通过喷管的压力和质量流量足以达到音速的状况下,拉伐尔喷管会在喉部产生阻流现象。若是没有达到条件,则不会有超音速气流产生,此时运作方式较接近文氏管。这要求喷管的入口压力始终显著高于环境压力(亦即喷流的静止压力必须高于环境压力)。

另外,喷管出口处的气体压力不能太低。出口压力虽然可以低于其排出的环境压力,但是如果低得太超过,那么气流将不再为超音速,或者将在喷管的扩张部剥离,形成喷管内的紊流,产生侧向推力并可能损坏喷管。

实务上,出口处超音速气流压力必须高于约2-3倍环境压力,气体才能离开喷管。

通过拉伐尔喷管的气流分析涉及许多概念和假设:

气体以亚音速进入喷管,随着喷管收缩,气体被迫加速,直到截面积最小的喷管喉部时,恰好达到音速。扩张部从喉部开始,截面积逐渐加大,气体跟着膨胀,渐渐超越音速。可用以下等式来计算排出气体的线速度:

一些典型火箭发动机推进剂的排气速度 v e {\displaystyle v_{e}} 值如下:

值得注意的一点是,基于排出气体表现为理想气体的假设, v e {\displaystyle v_{e}} 有时也被称作理想排气速度。

使用上述等式的举例如下:假定推进剂燃烧后排出气体:进入喷管的绝对压力 p {\displaystyle p} = 7.0MPa,并在绝对压力 p e {\displaystyle p_{e}} = 0.1MPa下离开火箭排气口。在绝对温度 T {\displaystyle T} = 3500K下,具有等熵膨胀因子γ= 1.22和莫耳质量 M {\displaystyle M} = 22kg / kmol。 使用上述公式计算可得出排气速度 v e {\displaystyle v_{e}} = 2802 m / s(2.80 km / s),这与上述典型值一致。

在阅读技术文献时可能感到困惑,因为许多作者并没有解释他们是使用理想气体常数 R {\displaystyle R} ,或者他们使用气体定律常数 R s {\displaystyle R_{s}} ,这只适用于特定气体。 两个常数之间的关系是 R s {\displaystyle R_{s}} = R {\displaystyle R} / M {\displaystyle M}

音速是一个与密度有关的量。流体速度与音速的比值被称为马赫数:

1) M = c a {\displaystyle M={\frac {c}{a}}}

由欧拉方程和理想气体状态方程式可得出:

d p / d ρ = a 2 {\displaystyle dp/d\rho =a^{2}} :

c d c d x = 1 ρ d p d x = 1 ρ d p d ρ d ρ d x = a 2 ρ d ρ d x {\displaystyle c{\frac {dc}{dx}}=-{\frac {1}{\rho }}{\frac {dp}{dx}}=-{\frac {1}{\rho }}{\frac {dp}{d\rho }}{\frac {d\rho }{dx}}=-{\frac {a^{2}}{\rho }}{\frac {d\rho }{dx}}} ,

2) 1 ρ d ρ d x = M 2 1 c d c d x {\displaystyle {\frac {1}{\rho }}{\frac {d\rho }{dx}}=-M^{2}{\frac {1}{c}}{\frac {dc}{dx}}} ,

方程(2)表明,沿着流线方向,气体密度变化和速度变化是成正比的,系数为 M 2 {\displaystyle M^{2}} 。由此可得,亚音速状态下,密度变化小于速度变化;相反,超音速状态下,密度变化大于速度变化。

然后根据连续性假设,

ρ c A = c o n s t {\displaystyle \rho cA={\mathsf {const}}} ,

ln ρ + ln c + ln A = ln ( c o n s t ) {\displaystyle \ln \rho +\ln c+\ln A=\ln({\mathsf {const}})} ,

d ρ ρ + d c c + d A A = 0 {\displaystyle {\frac {d\rho }{\rho }}+{\frac {dc}{c}}+{\frac {dA}{A}}=0} .

沿流线求导,有

3) 1 c d c d x = 1 M 2 1 1 A d A d x {\displaystyle {\frac {1}{c}}{\frac {dc}{dx}}={\frac {1}{M^{2}-1}}{\frac {1}{A}}{\frac {dA}{dx}}} .

如果把截面积A(x)当作已知,流速c(x),马赫数M(x)当作未知,由方程(3)就可对流动状况进行讨论。如果相对流体进行加速,则必须dc/dx > 0,由(3)

相关

  • 油页岩油页岩工业是指通过采掘和处理油页岩来取得其中油母质以便利用其中的液体碳氢化合物的工业,是一种高污染高耗能的工业。据2005年发表的一份报告,爱沙尼亚产出了当时世界上70%
  • SnSsub2/sub二硫化锡是一种无机化合物,俗称“金粉”,常用作金色的涂料。二硫化锡可由锡和硫在碘的存在下直接化合得到,反应需要加热:另一种方法则是将硫化氢通入锡(IV)盐或锡(IV)酸盐溶液,沉
  • 单胺氧化酶单胺氧化酶抑制剂(英语:MAOIs, Monoamine oxidase inhibitor)是一类抑制单胺氧化酶作用的药物。该类药品在抑郁症的治疗中已有很长的一段历史,相比其他抗抑郁药,该药对非典型抑郁
  • 高雄捷运 §从政府兴建到民间兴建营运后转移模式高运量捷运:BOT环状轻轨:第三轨供电(750伏特直流电)高雄都会区大众捷运系统,简称高雄捷运、高捷,为中华民国第二座投入营运的城市轨道交通系统、首座机场联络轨道系统,以高雄市区为
  • 李孟谚李孟谚(1966年12月12日-)彰化县人,现任中华民国行政院秘书长兼各联合服务中心主任,台湾水利专家,曾任台南市代理市长。在台北县长苏贞昌任内担任水利局长,协助台北县(今新北市)脱离水
  • 亚热带沙漠气候副热带干旱半干旱气候主要分布于热带干旱半干旱气候的向高纬一侧,约在纬度25至35度的大陆西岸和内陆地区。具体分布于:北非、约旦、叙利亚、伊拉克、美国西南部、墨西哥北部、
  • 阿德莱·E·史蒂文森阿德莱·E·史蒂文森(英语:Adlai Ewing Stevenson,1835年10月23日-1914年6月14日),美国政治家,1893年至1897年第23届美国副总统,曾担任伊利诺伊州联邦众议员,后在克利夫兰总统政府中
  • 蒙特利尔实验室蒙特利尔实验室(英语:Montreal Laboratory)位于加拿大魁北克省蒙特利尔市,二战期间由加拿大的国家科研委员会(英语:National Research Council (Canada))建立,以便与英国协作研究核
  • 安德森·库珀安德森·海斯·库珀(Anderson Hays Cooper,1967年6月3日-),是一个美国记者、作家和电视主持人。 他是有线电视新闻网(CNN)的新闻节目《安德森·库珀360°》()的主播。该节目通常是在
  • 奥斯卡一世奥斯卡一世(Oscar I,1799年7月4日-1859年7月8日),法语名约瑟夫·弗朗索瓦·奥斯卡·贝尔纳多特(Joseph François Oscar Bernadotte),瑞典和挪威国王(1844年-1859年在位)。他是瑞典国