拉伐尔喷管

✍ dations ◷ 2025-11-22 14:34:13 #喷气发动机,流体力学,天体物理学

拉伐尔喷管(, 亦称渐缩渐阔喷管,convergent-divergent nozzle、CD nozzle或con-di nozzle)是一个中间收缩、不对称沙漏状的管子。借由将流体的热能转化为动能,可将通过它的热压缩气体加速到超音速。气体在截面积最小处恰好达到音速。被广泛用作蒸汽涡轮机及火箭发动机喷管,亦可见于超音速喷气发动机。类似的流动性质已经应用于天体物理学中的喷气流。

公元1888年,由瑞典发明家Gustaf de Laval(英语:Gustaf de Laval)开发,并使用在蒸汽涡轮机上。

最早被罗伯特·戈达德用作火箭发动机,大多数使用高温燃烧气体的现代火箭发动机都使用拉伐尔喷管。

其操作有赖于亚音速和超音速气体的不同特性。 如果由于质量流量不变而管道变窄,则亚音速气体流速将会增加。 通过拉伐尔喷管的气流是等熵的(气体熵几乎不变)。在亚音速流中,气体是不可压缩的,声音会通过它传播。 在横截面面积最小的喉部,气体速度局部达到声速(马赫数= 1.0),这种状况称为阻流。 随着喷管横截面积的增加,气体开始膨胀,气流加速到超音速,在那里声波不会通过气体向后传播(马赫数> 1.0)。

只有在通过喷管的压力和质量流量足以达到音速的状况下,拉伐尔喷管会在喉部产生阻流现象。若是没有达到条件,则不会有超音速气流产生,此时运作方式较接近文氏管。这要求喷管的入口压力始终显著高于环境压力(亦即喷流的静止压力必须高于环境压力)。

另外,喷管出口处的气体压力不能太低。出口压力虽然可以低于其排出的环境压力,但是如果低得太超过,那么气流将不再为超音速,或者将在喷管的扩张部剥离,形成喷管内的紊流,产生侧向推力并可能损坏喷管。

实务上,出口处超音速气流压力必须高于约2-3倍环境压力,气体才能离开喷管。

通过拉伐尔喷管的气流分析涉及许多概念和假设:

气体以亚音速进入喷管,随着喷管收缩,气体被迫加速,直到截面积最小的喷管喉部时,恰好达到音速。扩张部从喉部开始,截面积逐渐加大,气体跟着膨胀,渐渐超越音速。可用以下等式来计算排出气体的线速度:

一些典型火箭发动机推进剂的排气速度 v e {\displaystyle v_{e}} 值如下:

值得注意的一点是,基于排出气体表现为理想气体的假设, v e {\displaystyle v_{e}} 有时也被称作理想排气速度。

使用上述等式的举例如下:假定推进剂燃烧后排出气体:进入喷管的绝对压力 p {\displaystyle p} = 7.0MPa,并在绝对压力 p e {\displaystyle p_{e}} = 0.1MPa下离开火箭排气口。在绝对温度 T {\displaystyle T} = 3500K下,具有等熵膨胀因子γ= 1.22和莫耳质量 M {\displaystyle M} = 22kg / kmol。 使用上述公式计算可得出排气速度 v e {\displaystyle v_{e}} = 2802 m / s(2.80 km / s),这与上述典型值一致。

在阅读技术文献时可能感到困惑,因为许多作者并没有解释他们是使用理想气体常数 R {\displaystyle R} ,或者他们使用气体定律常数 R s {\displaystyle R_{s}} ,这只适用于特定气体。 两个常数之间的关系是 R s {\displaystyle R_{s}} = R {\displaystyle R} / M {\displaystyle M}

音速是一个与密度有关的量。流体速度与音速的比值被称为马赫数:

1) M = c a {\displaystyle M={\frac {c}{a}}}

由欧拉方程和理想气体状态方程式可得出:

d p / d ρ = a 2 {\displaystyle dp/d\rho =a^{2}} :

c d c d x = 1 ρ d p d x = 1 ρ d p d ρ d ρ d x = a 2 ρ d ρ d x {\displaystyle c{\frac {dc}{dx}}=-{\frac {1}{\rho }}{\frac {dp}{dx}}=-{\frac {1}{\rho }}{\frac {dp}{d\rho }}{\frac {d\rho }{dx}}=-{\frac {a^{2}}{\rho }}{\frac {d\rho }{dx}}} ,

2) 1 ρ d ρ d x = M 2 1 c d c d x {\displaystyle {\frac {1}{\rho }}{\frac {d\rho }{dx}}=-M^{2}{\frac {1}{c}}{\frac {dc}{dx}}} ,

方程(2)表明,沿着流线方向,气体密度变化和速度变化是成正比的,系数为 M 2 {\displaystyle M^{2}} 。由此可得,亚音速状态下,密度变化小于速度变化;相反,超音速状态下,密度变化大于速度变化。

然后根据连续性假设,

ρ c A = c o n s t {\displaystyle \rho cA={\mathsf {const}}} ,

ln ρ + ln c + ln A = ln ( c o n s t ) {\displaystyle \ln \rho +\ln c+\ln A=\ln({\mathsf {const}})} ,

d ρ ρ + d c c + d A A = 0 {\displaystyle {\frac {d\rho }{\rho }}+{\frac {dc}{c}}+{\frac {dA}{A}}=0} .

沿流线求导,有

3) 1 c d c d x = 1 M 2 1 1 A d A d x {\displaystyle {\frac {1}{c}}{\frac {dc}{dx}}={\frac {1}{M^{2}-1}}{\frac {1}{A}}{\frac {dA}{dx}}} .

如果把截面积A(x)当作已知,流速c(x),马赫数M(x)当作未知,由方程(3)就可对流动状况进行讨论。如果相对流体进行加速,则必须dc/dx > 0,由(3)

相关

  • 干燥管干燥管是化学实验中用于干燥气体或除去气体中杂质的一种设备。通常两端有连接口用于连接导管,中间盛有有固体干燥剂或除杂剂。气体从一端流入干燥管时,由于气体中的水或者其它
  • 张玉奎张玉奎(1942年9月13日-),中国分析化学家。生于河北保定。1965年毕业于南开大学化学系。中国科学院大连化学物理研究所研究员,曾任该所副所长、国家色谱研究分析中心主任。2003年
  • 克里普矿物克里普(KREEP)这个字的建构来自字母K( potassium的原子符号)、REE(Rare Earth Elements)和P(phosphorus),是一些被撞击的月球角砾岩和玄武岩中的地球化学成分。其最显著的特征是绝大
  • 原子反应堆核子反应炉(英语:nuclear reactor)是一种启动、控制并维持核裂变或核聚变链式反应的装置。相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,
  • 永州双牌阳明山旅游区阳明山国家公园是中华民国设置的第三个国家公园,由内政部营建署管辖,前身为台湾日治时期成立之大屯国立公园(1937-1945)。位于台北都会区近郊,行政区域 包括台北市北投区、士林区
  • 太昊陵坐标:33°45′06″N 114°52′54″E / 33.75167°N 114.88167°E / 33.75167; 114.88167太昊陵庙位于中国河南省淮阳县城北,是太昊伏羲氏的陵庙,1996年被列为第四批全国重点文
  • 亚历山德罗·科斯塔库塔 亚历山德罗·“比利”·科斯塔库塔(意大利语:Alessandro "Billy" Costacurta,1966年4月24日-)是一名前意大利足球运动员,从1987年至2007年一直效力于AC米兰。与队友保罗·马
  • 拉彭兰塔理工大学拉彭兰塔-拉赫蒂理工大学(芬兰语:Lappeenrannan-Lahden teknillinen yliopisto LUT,英语:Lappeenranta-Lahti University of Technology LUT,简称为“LUT”)成立于1969年。主校区
  • 伞形目伞形目(学名:Apiales)又名伞形花目,是被子植物门双子叶植物纲下的一个目。下面包含五加科、伞形花科两个比较大的科别,这两个科别的植物有很多著名的药材,例如五加科中有人参属与
  • 长矛笋螺长矛笋螺(学名:),是新腹足目笋螺科笋螺属的一种。主要分布于中国大陆、台湾,常栖息在低潮线以下。