拉伐尔喷管

✍ dations ◷ 2025-07-02 09:08:52 #喷气发动机,流体力学,天体物理学

拉伐尔喷管(, 亦称渐缩渐阔喷管,convergent-divergent nozzle、CD nozzle或con-di nozzle)是一个中间收缩、不对称沙漏状的管子。借由将流体的热能转化为动能,可将通过它的热压缩气体加速到超音速。气体在截面积最小处恰好达到音速。被广泛用作蒸汽涡轮机及火箭发动机喷管,亦可见于超音速喷气发动机。类似的流动性质已经应用于天体物理学中的喷气流。

公元1888年,由瑞典发明家Gustaf de Laval(英语:Gustaf de Laval)开发,并使用在蒸汽涡轮机上。

最早被罗伯特·戈达德用作火箭发动机,大多数使用高温燃烧气体的现代火箭发动机都使用拉伐尔喷管。

其操作有赖于亚音速和超音速气体的不同特性。 如果由于质量流量不变而管道变窄,则亚音速气体流速将会增加。 通过拉伐尔喷管的气流是等熵的(气体熵几乎不变)。在亚音速流中,气体是不可压缩的,声音会通过它传播。 在横截面面积最小的喉部,气体速度局部达到声速(马赫数= 1.0),这种状况称为阻流。 随着喷管横截面积的增加,气体开始膨胀,气流加速到超音速,在那里声波不会通过气体向后传播(马赫数> 1.0)。

只有在通过喷管的压力和质量流量足以达到音速的状况下,拉伐尔喷管会在喉部产生阻流现象。若是没有达到条件,则不会有超音速气流产生,此时运作方式较接近文氏管。这要求喷管的入口压力始终显著高于环境压力(亦即喷流的静止压力必须高于环境压力)。

另外,喷管出口处的气体压力不能太低。出口压力虽然可以低于其排出的环境压力,但是如果低得太超过,那么气流将不再为超音速,或者将在喷管的扩张部剥离,形成喷管内的紊流,产生侧向推力并可能损坏喷管。

实务上,出口处超音速气流压力必须高于约2-3倍环境压力,气体才能离开喷管。

通过拉伐尔喷管的气流分析涉及许多概念和假设:

气体以亚音速进入喷管,随着喷管收缩,气体被迫加速,直到截面积最小的喷管喉部时,恰好达到音速。扩张部从喉部开始,截面积逐渐加大,气体跟着膨胀,渐渐超越音速。可用以下等式来计算排出气体的线速度:

一些典型火箭发动机推进剂的排气速度 v e {\displaystyle v_{e}} 值如下:

值得注意的一点是,基于排出气体表现为理想气体的假设, v e {\displaystyle v_{e}} 有时也被称作理想排气速度。

使用上述等式的举例如下:假定推进剂燃烧后排出气体:进入喷管的绝对压力 p {\displaystyle p} = 7.0MPa,并在绝对压力 p e {\displaystyle p_{e}} = 0.1MPa下离开火箭排气口。在绝对温度 T {\displaystyle T} = 3500K下,具有等熵膨胀因子γ= 1.22和莫耳质量 M {\displaystyle M} = 22kg / kmol。 使用上述公式计算可得出排气速度 v e {\displaystyle v_{e}} = 2802 m / s(2.80 km / s),这与上述典型值一致。

在阅读技术文献时可能感到困惑,因为许多作者并没有解释他们是使用理想气体常数 R {\displaystyle R} ,或者他们使用气体定律常数 R s {\displaystyle R_{s}} ,这只适用于特定气体。 两个常数之间的关系是 R s {\displaystyle R_{s}} = R {\displaystyle R} / M {\displaystyle M}

音速是一个与密度有关的量。流体速度与音速的比值被称为马赫数:

1) M = c a {\displaystyle M={\frac {c}{a}}}

由欧拉方程和理想气体状态方程式可得出:

d p / d ρ = a 2 {\displaystyle dp/d\rho =a^{2}} :

c d c d x = 1 ρ d p d x = 1 ρ d p d ρ d ρ d x = a 2 ρ d ρ d x {\displaystyle c{\frac {dc}{dx}}=-{\frac {1}{\rho }}{\frac {dp}{dx}}=-{\frac {1}{\rho }}{\frac {dp}{d\rho }}{\frac {d\rho }{dx}}=-{\frac {a^{2}}{\rho }}{\frac {d\rho }{dx}}} ,

2) 1 ρ d ρ d x = M 2 1 c d c d x {\displaystyle {\frac {1}{\rho }}{\frac {d\rho }{dx}}=-M^{2}{\frac {1}{c}}{\frac {dc}{dx}}} ,

方程(2)表明,沿着流线方向,气体密度变化和速度变化是成正比的,系数为 M 2 {\displaystyle M^{2}} 。由此可得,亚音速状态下,密度变化小于速度变化;相反,超音速状态下,密度变化大于速度变化。

然后根据连续性假设,

ρ c A = c o n s t {\displaystyle \rho cA={\mathsf {const}}} ,

ln ρ + ln c + ln A = ln ( c o n s t ) {\displaystyle \ln \rho +\ln c+\ln A=\ln({\mathsf {const}})} ,

d ρ ρ + d c c + d A A = 0 {\displaystyle {\frac {d\rho }{\rho }}+{\frac {dc}{c}}+{\frac {dA}{A}}=0} .

沿流线求导,有

3) 1 c d c d x = 1 M 2 1 1 A d A d x {\displaystyle {\frac {1}{c}}{\frac {dc}{dx}}={\frac {1}{M^{2}-1}}{\frac {1}{A}}{\frac {dA}{dx}}} .

如果把截面积A(x)当作已知,流速c(x),马赫数M(x)当作未知,由方程(3)就可对流动状况进行讨论。如果相对流体进行加速,则必须dc/dx > 0,由(3)

相关

  • 危险性符号危险性符号(Hazard symbols)是用来标识危险的物质、地点或物品,包括电流、毒物与放射性。危险性符号通常由法律规定并由标准化组织执行。括号内为该符号的Unicode编码。有毒(“
  • 祖先祖先,又称祖亲、祖宗,是指辈分比自己高的直系血亲,与后代相反。然而,很多时候所指的祖先,通常都是最少隔几代,年代久远的则称为远祖。在很多父系社会,狭义的祖先一词只代指父亲那边
  • 脑中的资讯处理速度心理测时法可被定义为人脑信息处理的时序研究或者为心理活动的精确测量。心理测试法可以被用在认知心理学或行为神经科学中来解释认知过程的机理。
  • 大统集团大统集团是一间主要以台湾南部高雄市为营运重心的百货和量贩业者,于1950年代由纺织品贸易商吴耀庭所创立,其旗下的大统百货是台湾南部第一间大型百货公司。除了经营自有品牌的
  • 革命社会主义革命社会主义(英语:Revolutionary Socialism)不是一种独立的意识形态。它泛指一切反对改良主义的社会主义理论,包括一些以马克思主义为基础的理论(包括卢森堡主义、不可能主义、
  • 多克隆抗体多克隆抗体,亦作“多株抗体”(Polyclonal Antibody)是一种含有多种类型抗体的抗体混合物。其名称中的“多”指抗体混合物由不同类型的浆细胞生产而来:430。要生产多克隆抗体,首
  • 腓尼基腓尼基(腓尼基语:����‬;英语:Phoenicia;希腊语:Φοινίκη;阿拉伯语:فينيقية‎;埃及语: ())是古代地中海东岸的一个地区,其范围接近于如今的黎巴嫩和叙利亚。为了便于修筑堡垒以
  • 新海诚新海诚(日语:新海 誠/しんかい まこと  */?,1973年2月9日-),本名新津诚(新津 誠/にいつ まこと ),日本动画作家和电影导演。长野县南佐久郡小海町人,现居东京。于2002年公开独立制作
  • 德奥瑞德奥瑞(D-A-CH)是一个首字母缩略字组成的合成词,D、A、CH三组字母分别代表德国(德语:Deutshland)、奥地利(拉丁语:Austria)和瑞士(拉丁语:Confoederatio Helvetica)。“DACH”在德语中本
  • 安达峰一郎安达峰一郎(Mineichirō Adachi或Mineitcirō Adatci,1869年7月27日至1934年12月28日 ),日本外交官、国际法学者。 年少时因见当时日本饱受不平等条约之束缚,奋学国际法,以伸国权