离散空间

✍ dations ◷ 2025-04-04 11:27:17 #点集拓扑学,拓扑空间性质

在拓扑学和相关数学领域中,离散空间是特别简单的一种拓扑空间,在其中点都在特定意义下是相互孤立的。

给定集合:

对于任何 x , y X {displaystyle x,yin X}  := {1/ :  = 1,2,3,...} (带有从实直线继承来的度量,并给出为d(,) = | − |)。明显的,这不是离散度量;还有这个空间不是完备的并因袭作为一致空间不是离散的。然而它作为拓扑空间是离散的。我们称是“拓扑离散”而非“一致离散”或“度量离散”。

此外还有:

任何从离散拓扑空间到另一个拓扑空间的函数是连续函数,任何从离散一致空间到另一个一致空间的函数是一致连续的。就是说,在拓扑空间和连续映射范畴中,或在一致空间和一致连续映射范畴内,离散空间是集合上的自由对象。这些性质是更广泛现象的实例,在其中离散结构通常自由于集合上。

对于度量空间,事情更加复杂,因为依赖于所选择的态射有很多度量空间范畴。离散度量空间当然是自由的,在态射都是一致连续映射或连续映射的时候,但是这没有说对度量结构有价值的事情,只针对了一致或拓扑结构。与度量结构更有关的范畴可以通过把态射限制为利普希茨连续映射或短映射来找到;但是,这些范畴没有自由对象(在多于一个元素的时候)。但是,离散度量空间在有界度量空间和利普希茨连续映射范畴内是自由的,并且它在有界于1的度量空间和短映射范畴是自由的。就是说,从离散度量空间到另一个有界度量空间的函数是利普希茨连续的,而任何从离散度量空间到另一个有界于1的度量空间的函数是短映射。

在其他方向上,从拓扑空间到离散空间的函数是连续的,当且仅当它是局部常数函数,在所有的点都有在其上的邻域是常数的意义上。

离散结构通常用做不承载任何其他自然拓扑、一致或度量的集合上“缺省结构”。例如,任何群都可以通过给予它离散拓扑被认为是拓扑群,蕴涵了关于拓扑群适用于所有群的定理。实际上,分析学家更偏好被代数学家作为离散群来研究的平常的非拓扑群。在某些情况下,这可有用的应用,例如组合上Pontryagin对偶性。

0维流形(或微分流形或解析流形)就只是离散拓扑空间。在前面段落的精神下,我们可以把任何离散群看作0维李群。

尽管离散空间从拓扑学的角度看没有什么令人兴奋的,可以却可以从它们构造有趣的空间。例如,可数无限多个自然数离散空间的乘积同胚于无理数空间,带有同胚给出自连分数展开。可数多个离散空间{0,1}的乘积同胚于康托尔集合;并且事实上一致同胚于康托尔集合,如果我们在乘积上使用乘积一致。这种同胚给出自数字的三进制表示。(参见康托尔空间)。

在数学基础中,{0,1}乘积的紧致性质的研究是超滤子原理的拓扑途径的中心,它是弱形式的选择公理。

在某种意义上,离散拓扑的对立者是密着拓扑(也叫做“不可分拓扑”),它有最少可能数目的开集(就是空集和空间自身)。这里的离散拓扑是始对象和自由对象,而不可分拓扑是终对象或cofree对象:所有从拓扑空间到不可分空间的函数都是连续的。


邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 莱姆青柠,又称青柠柠檬,文献中也称来檬、绿檬,是芸香科柑橘属其中数种植物的统称,其果实的特征是淡黄绿色的球形、椭球形或倒卵形,直径约4至5厘米。由于亚热带与热带地区出产的柠檬也
  • 小红帽小红帽(英语:Little Red Riding Hood)是关于一个年轻女孩“小红帽”和一只大灰狼的欧洲童话故事。《小红帽》异本诸多,情节有时差异较大,以下仅概述较为常见的版本。在一个乡下,有
  • MH-6/AH-6小鸟攻击/通用直升机MH-6“小鸟式”(MH-6 "Little Bird",又常被昵称为“Killer Egg”(杀手蛋))直升机和它的攻击型版本AH-6,是美国陆军用于特种作战的单引擎轻型直升机。它最初是以OH-6A“小马式”侦
  • 唐儒阿雷坐标:10°39′21″N 0°11′42″E / 10.65583°N 0.19500°E / 10.65583; 0.19500唐儒阿雷(法语:Tandjouaré),是多哥的城镇,位于该国北部,由草原区负责管辖,是唐儒阿雷省的首府,面积
  • 拉希莉·阿塞马尼拉希莉·阿塞马尼(波斯语:راحله آسمانی‎,1989年6月21日-)生于伊朗卡拉季,是一名比利时籍女子跆拳道运动员。她曾代表伊朗在2010年亚洲运动会中获得女子62公斤级银牌。
  • 亨利·巴比塞亨利·巴比塞(Henri Barbusse,1873年5月17日 - 1935年8月30日),法国作家,法国共产党党员。早年曾发表诗集《泣妇》(1895)、长篇小说《哀求者》(1903)和《地狱》(1908)。第一次世
  • 拉脱维亚人名拉脱维亚人名的组成和大多数欧洲人名一致,包括名字(vārds)和姓氏(uzvārds)两部分,顺序是名前姓后。如今为子女取多个名字(即中间名)的现象也已经比较普遍。拉脱维亚人名拥有易于辨
  • 七月镜一七月镜一(日语:ななつき きょういち,1968年7月30日-),日本漫画原作者兼脚本家。本名为板本健太郎,出身于北海道。毕业于札幌光星高等学校、立正大学文学部史学科、且在同一间大学中
  • 自由民主主义学生紧急行动自由民主主义学生紧急行动(日语:自由と民主主義のための学生緊急行動;英语:Students Emergency Action for Liberal Democracys,缩写为SEALDs、シールズ)是日本的一个学生运动组织
  • 皮肯斯县 (佐治亚州)皮肯斯县(英语:Pickens County)是美国乔治亚州西北部的一个县。面积603平方公里。根据美国2000年人口普查,共有人口22,983人。2005年人口28,442人。县治