离散空间

✍ dations ◷ 2025-05-21 23:20:09 #点集拓扑学,拓扑空间性质

在拓扑学和相关数学领域中,离散空间是特别简单的一种拓扑空间,在其中点都在特定意义下是相互孤立的。

给定集合:

对于任何 x , y X {displaystyle x,yin X}  := {1/ :  = 1,2,3,...} (带有从实直线继承来的度量,并给出为d(,) = | − |)。明显的,这不是离散度量;还有这个空间不是完备的并因袭作为一致空间不是离散的。然而它作为拓扑空间是离散的。我们称是“拓扑离散”而非“一致离散”或“度量离散”。

此外还有:

任何从离散拓扑空间到另一个拓扑空间的函数是连续函数,任何从离散一致空间到另一个一致空间的函数是一致连续的。就是说,在拓扑空间和连续映射范畴中,或在一致空间和一致连续映射范畴内,离散空间是集合上的自由对象。这些性质是更广泛现象的实例,在其中离散结构通常自由于集合上。

对于度量空间,事情更加复杂,因为依赖于所选择的态射有很多度量空间范畴。离散度量空间当然是自由的,在态射都是一致连续映射或连续映射的时候,但是这没有说对度量结构有价值的事情,只针对了一致或拓扑结构。与度量结构更有关的范畴可以通过把态射限制为利普希茨连续映射或短映射来找到;但是,这些范畴没有自由对象(在多于一个元素的时候)。但是,离散度量空间在有界度量空间和利普希茨连续映射范畴内是自由的,并且它在有界于1的度量空间和短映射范畴是自由的。就是说,从离散度量空间到另一个有界度量空间的函数是利普希茨连续的,而任何从离散度量空间到另一个有界于1的度量空间的函数是短映射。

在其他方向上,从拓扑空间到离散空间的函数是连续的,当且仅当它是局部常数函数,在所有的点都有在其上的邻域是常数的意义上。

离散结构通常用做不承载任何其他自然拓扑、一致或度量的集合上“缺省结构”。例如,任何群都可以通过给予它离散拓扑被认为是拓扑群,蕴涵了关于拓扑群适用于所有群的定理。实际上,分析学家更偏好被代数学家作为离散群来研究的平常的非拓扑群。在某些情况下,这可有用的应用,例如组合上Pontryagin对偶性。

0维流形(或微分流形或解析流形)就只是离散拓扑空间。在前面段落的精神下,我们可以把任何离散群看作0维李群。

尽管离散空间从拓扑学的角度看没有什么令人兴奋的,可以却可以从它们构造有趣的空间。例如,可数无限多个自然数离散空间的乘积同胚于无理数空间,带有同胚给出自连分数展开。可数多个离散空间{0,1}的乘积同胚于康托尔集合;并且事实上一致同胚于康托尔集合,如果我们在乘积上使用乘积一致。这种同胚给出自数字的三进制表示。(参见康托尔空间)。

在数学基础中,{0,1}乘积的紧致性质的研究是超滤子原理的拓扑途径的中心,它是弱形式的选择公理。

在某种意义上,离散拓扑的对立者是密着拓扑(也叫做“不可分拓扑”),它有最少可能数目的开集(就是空集和空间自身)。这里的离散拓扑是始对象和自由对象,而不可分拓扑是终对象或cofree对象:所有从拓扑空间到不可分空间的函数都是连续的。


邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 雷诺氏症雷诺氏综合征(英语:Raynaud syndrome),也作雷诺现象(Raynaud phenomenon),是指由于血管痉挛(英语:vasospasm)而引起的一系列血管血流减少的情形。一般手指更容易受到影响,脚趾有时也会
  • 井户敏三井户敏三(日语:井戸 敏三/いど としぞう Ido Toshizō,1945年8月10日-)日本自治・总务官僚、政治人物。现任兵库县知事(5期),曾担任兵库县副知事(1996年 - 2001年)。2013年兵库县知事
  • 大星形十二面体在几何学上,大星形十二面体是一个由五角星组成的非凸正多面体,是正十二面体的星形多面体,其在非凸均匀多面体被编号为U52、在温尼尔多面体模型被编号为W22。该多面体最早是由温
  • 拉科语拉科语(,又译拉克语、拉基语等)由两种方言组成,山前拉科语(波斯语:پیشکوه لکی‎,Pish-e Kuh Laki)和山后拉科语(波斯语:پشتکوه لکی‎,Posht-e Kuh Laki)。大多数语言
  • Mp3tagMp3tag是一套编辑各种不同音乐文件格式元数据(像是ID3、APE tag)的免费软件。除了编辑各种音乐文件格式的元数据,它可以利用文件本身所拥有的元数据来替文件重命名,以利文件的整
  • 约翰·梅尔约翰·克莱顿·梅尔(英语:John Clayton Mayer,1977年10月16日-),美国创作歌手。梅尔生于康涅狄格州,在1997年搬家至乔治亚州亚特兰大之前,于伯克利音乐学院进修音乐、并获得了一些支
  • Rockstar LeedsRockstar Leeds(前身为Mobius Entertainment)是一间英国电子游戏开发商,公司总部位于利兹城西办公区。他是Rockstar Games的子公司,曾开发《马克思·佩恩》(GBA版)、《侠盗猎车手:
  • 葛守礼葛守礼(1502年-1578年),字与立,号与川,山东德平县(今临邑县德平镇葛老庄)人。明朝政治人物,嘉靖七年解元,联捷进士。历仕世宗、穆宗、神宗三朝,凡47年。官至户部尚书。谥端肃。出身农家
  • 靳树梁靳树梁(1899年4月1日-1964年7月5日),字栋华,男,直隶安肃(今河北徐水)人,中国冶金学家,中国科学院院士。靳树梁早年间就读于直隶公立工业专门学校应用化学科、北洋大学采冶科。1919年毕
  • 福原克己福原克己(8月24日-)是日本的男性声优。茨城县出身。AXL ONE准所属。2016年4月1日加入AXL ONE。2020年时,为第十四回声优奖新人男优奖得主之一。※粗体字为主要角色。2017年2018