离散空间

✍ dations ◷ 2025-04-04 06:23:15 #点集拓扑学,拓扑空间性质

在拓扑学和相关数学领域中,离散空间是特别简单的一种拓扑空间,在其中点都在特定意义下是相互孤立的。

给定集合:

对于任何 x , y X {displaystyle x,yin X}  := {1/ :  = 1,2,3,...} (带有从实直线继承来的度量,并给出为d(,) = | − |)。明显的,这不是离散度量;还有这个空间不是完备的并因袭作为一致空间不是离散的。然而它作为拓扑空间是离散的。我们称是“拓扑离散”而非“一致离散”或“度量离散”。

此外还有:

任何从离散拓扑空间到另一个拓扑空间的函数是连续函数,任何从离散一致空间到另一个一致空间的函数是一致连续的。就是说,在拓扑空间和连续映射范畴中,或在一致空间和一致连续映射范畴内,离散空间是集合上的自由对象。这些性质是更广泛现象的实例,在其中离散结构通常自由于集合上。

对于度量空间,事情更加复杂,因为依赖于所选择的态射有很多度量空间范畴。离散度量空间当然是自由的,在态射都是一致连续映射或连续映射的时候,但是这没有说对度量结构有价值的事情,只针对了一致或拓扑结构。与度量结构更有关的范畴可以通过把态射限制为利普希茨连续映射或短映射来找到;但是,这些范畴没有自由对象(在多于一个元素的时候)。但是,离散度量空间在有界度量空间和利普希茨连续映射范畴内是自由的,并且它在有界于1的度量空间和短映射范畴是自由的。就是说,从离散度量空间到另一个有界度量空间的函数是利普希茨连续的,而任何从离散度量空间到另一个有界于1的度量空间的函数是短映射。

在其他方向上,从拓扑空间到离散空间的函数是连续的,当且仅当它是局部常数函数,在所有的点都有在其上的邻域是常数的意义上。

离散结构通常用做不承载任何其他自然拓扑、一致或度量的集合上“缺省结构”。例如,任何群都可以通过给予它离散拓扑被认为是拓扑群,蕴涵了关于拓扑群适用于所有群的定理。实际上,分析学家更偏好被代数学家作为离散群来研究的平常的非拓扑群。在某些情况下,这可有用的应用,例如组合上Pontryagin对偶性。

0维流形(或微分流形或解析流形)就只是离散拓扑空间。在前面段落的精神下,我们可以把任何离散群看作0维李群。

尽管离散空间从拓扑学的角度看没有什么令人兴奋的,可以却可以从它们构造有趣的空间。例如,可数无限多个自然数离散空间的乘积同胚于无理数空间,带有同胚给出自连分数展开。可数多个离散空间{0,1}的乘积同胚于康托尔集合;并且事实上一致同胚于康托尔集合,如果我们在乘积上使用乘积一致。这种同胚给出自数字的三进制表示。(参见康托尔空间)。

在数学基础中,{0,1}乘积的紧致性质的研究是超滤子原理的拓扑途径的中心,它是弱形式的选择公理。

在某种意义上,离散拓扑的对立者是密着拓扑(也叫做“不可分拓扑”),它有最少可能数目的开集(就是空集和空间自身)。这里的离散拓扑是始对象和自由对象,而不可分拓扑是终对象或cofree对象:所有从拓扑空间到不可分空间的函数都是连续的。


邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 月经不调月经失调,又称月经不调,指月经周期或出血量的异常。
  • 庄静皇贵妃庄静皇贵妃(1837年4月2日-1890年12月26日),他他拉氏,满洲八旗出身。主事庆海之女。咸丰帝宠妃,荣安固伦公主生母。道光十七年二月二十七日出生。“丽”字的满文意思为“俏丽”或“
  • 汉城国立大学附设医院屠杀事件汉城国立大学附属医院屠杀事件(朝鲜语:서울대학교 부속병원 학살 사건/서울大學校附属病院虐殺事件)发生于韩战爆发3日之后、1950年6月28日的第一次汉城战役期间,汉城大学附属医
  • 山东鲁能泰山山东鲁能泰山足球俱乐部,是一家位于中国山东省的足球俱乐部,在整个山东省乃至全国都拥有非常雄厚的球迷基础。是中国足球超级联赛中最成功的俱乐部之一。其前身是1956年4月10
  • 地中海地区 (土耳其)地中海地区(土耳其语:Akdeniz Bölgesi)是土耳其的七个地理分区之一,位于该国的南侧。该地区面积122,927平方千米,2007年时人口达890万。该地区地形以山地为主,托鲁斯山脉横贯其中
  • 金门海峡 (美国)金门海峡(Golden Gate)是一个位于美国加利福尼亚州的海峡,东连旧金山湾,西部通往太平洋,南北宽1.6公里至3公里,东西长约8公里。金门大桥自1930年代横跨这个海峡。旧金山市区位于海
  • 张春帆 (清朝)张春帆(19世纪?-1935年),名炎,笔名漱六山房,毗陵(江苏常州)人。寓居上海,开有漱六山房书局,经常为各报馆撰短篇小说。辛亥革命后,曾任江北都督府要职。是小说《九尾龟》的作者,内容是十里
  • 萨古鲁萨古鲁(Sadhguru),全名:萨德古乎·札吉·瓦苏得沃(Sadhguru Jaggi Vasudeva,1957年9月3日-),出生于印度迈索尔市,是一位瑜伽大师、神秘学家、诗人、作家,也是“Isha瑜伽”以及Isha基金
  • ALWAYS《ALWAYS》,日本女歌手中岛美嘉的第31张单曲。2010年1月20日发行。前月29日-5日(合算周) 初恋(福山雅治) | 12日 Butterfly(木村KAELA) | 19日、26日 ALWAYS(中岛美嘉)2日 Butterfly(木
  • 威廉·利文斯顿威廉·利文斯顿(英语:William Livingston,1723年11月30日-1790年7月25日),是一位美国政治家及军事家,在美国独立战争期间出任新泽西州州长,也是《美国宪法》签署人之一。利文斯顿是