离散空间

✍ dations ◷ 2025-06-17 13:36:07 #点集拓扑学,拓扑空间性质

在拓扑学和相关数学领域中,离散空间是特别简单的一种拓扑空间,在其中点都在特定意义下是相互孤立的。

给定集合:

对于任何 x , y X {displaystyle x,yin X}  := {1/ :  = 1,2,3,...} (带有从实直线继承来的度量,并给出为d(,) = | − |)。明显的,这不是离散度量;还有这个空间不是完备的并因袭作为一致空间不是离散的。然而它作为拓扑空间是离散的。我们称是“拓扑离散”而非“一致离散”或“度量离散”。

此外还有:

任何从离散拓扑空间到另一个拓扑空间的函数是连续函数,任何从离散一致空间到另一个一致空间的函数是一致连续的。就是说,在拓扑空间和连续映射范畴中,或在一致空间和一致连续映射范畴内,离散空间是集合上的自由对象。这些性质是更广泛现象的实例,在其中离散结构通常自由于集合上。

对于度量空间,事情更加复杂,因为依赖于所选择的态射有很多度量空间范畴。离散度量空间当然是自由的,在态射都是一致连续映射或连续映射的时候,但是这没有说对度量结构有价值的事情,只针对了一致或拓扑结构。与度量结构更有关的范畴可以通过把态射限制为利普希茨连续映射或短映射来找到;但是,这些范畴没有自由对象(在多于一个元素的时候)。但是,离散度量空间在有界度量空间和利普希茨连续映射范畴内是自由的,并且它在有界于1的度量空间和短映射范畴是自由的。就是说,从离散度量空间到另一个有界度量空间的函数是利普希茨连续的,而任何从离散度量空间到另一个有界于1的度量空间的函数是短映射。

在其他方向上,从拓扑空间到离散空间的函数是连续的,当且仅当它是局部常数函数,在所有的点都有在其上的邻域是常数的意义上。

离散结构通常用做不承载任何其他自然拓扑、一致或度量的集合上“缺省结构”。例如,任何群都可以通过给予它离散拓扑被认为是拓扑群,蕴涵了关于拓扑群适用于所有群的定理。实际上,分析学家更偏好被代数学家作为离散群来研究的平常的非拓扑群。在某些情况下,这可有用的应用,例如组合上Pontryagin对偶性。

0维流形(或微分流形或解析流形)就只是离散拓扑空间。在前面段落的精神下,我们可以把任何离散群看作0维李群。

尽管离散空间从拓扑学的角度看没有什么令人兴奋的,可以却可以从它们构造有趣的空间。例如,可数无限多个自然数离散空间的乘积同胚于无理数空间,带有同胚给出自连分数展开。可数多个离散空间{0,1}的乘积同胚于康托尔集合;并且事实上一致同胚于康托尔集合,如果我们在乘积上使用乘积一致。这种同胚给出自数字的三进制表示。(参见康托尔空间)。

在数学基础中,{0,1}乘积的紧致性质的研究是超滤子原理的拓扑途径的中心,它是弱形式的选择公理。

在某种意义上,离散拓扑的对立者是密着拓扑(也叫做“不可分拓扑”),它有最少可能数目的开集(就是空集和空间自身)。这里的离散拓扑是始对象和自由对象,而不可分拓扑是终对象或cofree对象:所有从拓扑空间到不可分空间的函数都是连续的。


邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 平底烧瓶平底烧瓶是实验室中使用的一种烧瓶类玻璃器皿,主要用来盛液体物质,可以轻度受热。加热时可不使用石棉网。强烈加热则应使用圆底烧瓶。底部为半球形,上部有一个长颈以便容物出入
  • NiS硫化镍是一种无机化合物,化学式为NiS。它在自然界中以针镍矿的形式存在。硫化镍可由传统的镍盐与硫化氢反应的方法制备:镍盐溶液和硫化铵溶液反应,也能得到α-NiS,它刚沉淀出来
  • CBS NewsCBS新闻(CBS News)是指美国的电视广播网哥伦比亚广播公司(CBS)的新闻部门,也可以指出其制作播出节目的总称。CBS新闻的现任主席是杰夫·法格尔(Jeff Fager),他也是60分钟的执行制作
  • 星系团星系团(Galaxy clusters、Cluster of galaxies)是由星系组成的自引力束缚体系,通常尺度在数百万秒差距或数百万光年,包含了数百到数千个星系。包含了少量星系的星系团叫做星系群
  • 丙子战争丙子战争,又称“丙子胡乱”,指1636年(清崇德元年、朝鲜仁祖十四年)皇太极称帝后不久率领“十万”清朝军队攻打朝鲜的事件。这是满洲(后金及清)政权第二次攻打朝鲜,因爆发于丙子年,故
  • 楮又名小构树(学名:Broussonetia kazinoki)为桑科构属的植物。分布在朝鲜、台湾、日本以及中国大陆的西南、华南等地,生长于海拔200米至2,000米的地区,常生长在沟边、低山地区山
  • 美墨边境美墨边界(英语:Mexico–United States border;西班牙语:Frontera entre Estados Unidos y México)是指美国4个州与墨西哥6个州两国的所比邻之国界。西起美国加利福尼亚州圣地牙
  • 家庭医生笔记家庭医生笔记(英语:GPnotebook)是英国为家庭医生(GP)所建的医学数据库。它是一本线上医学百科全书,提供全球临床医师立即的参考资源。家庭医生笔记数据库内建有超过三万篇资料页面
  • 罗湖站罗湖站可以指:
  • 新阳武侯祠新阳武侯祠是位于中国福建省漳州市云霄县马铺乡新阳村的一座武侯祠。此祠原为新林武侯祠,始建于清雍正十三年(1735年),1975年,峰头大坝建成,武侯祠和村子一起没入了水中。2014年,当