离散空间

✍ dations ◷ 2025-10-28 03:54:20 #点集拓扑学,拓扑空间性质

在拓扑学和相关数学领域中,离散空间是特别简单的一种拓扑空间,在其中点都在特定意义下是相互孤立的。

给定集合:

对于任何 x , y X {displaystyle x,yin X}  := {1/ :  = 1,2,3,...} (带有从实直线继承来的度量,并给出为d(,) = | − |)。明显的,这不是离散度量;还有这个空间不是完备的并因袭作为一致空间不是离散的。然而它作为拓扑空间是离散的。我们称是“拓扑离散”而非“一致离散”或“度量离散”。

此外还有:

任何从离散拓扑空间到另一个拓扑空间的函数是连续函数,任何从离散一致空间到另一个一致空间的函数是一致连续的。就是说,在拓扑空间和连续映射范畴中,或在一致空间和一致连续映射范畴内,离散空间是集合上的自由对象。这些性质是更广泛现象的实例,在其中离散结构通常自由于集合上。

对于度量空间,事情更加复杂,因为依赖于所选择的态射有很多度量空间范畴。离散度量空间当然是自由的,在态射都是一致连续映射或连续映射的时候,但是这没有说对度量结构有价值的事情,只针对了一致或拓扑结构。与度量结构更有关的范畴可以通过把态射限制为利普希茨连续映射或短映射来找到;但是,这些范畴没有自由对象(在多于一个元素的时候)。但是,离散度量空间在有界度量空间和利普希茨连续映射范畴内是自由的,并且它在有界于1的度量空间和短映射范畴是自由的。就是说,从离散度量空间到另一个有界度量空间的函数是利普希茨连续的,而任何从离散度量空间到另一个有界于1的度量空间的函数是短映射。

在其他方向上,从拓扑空间到离散空间的函数是连续的,当且仅当它是局部常数函数,在所有的点都有在其上的邻域是常数的意义上。

离散结构通常用做不承载任何其他自然拓扑、一致或度量的集合上“缺省结构”。例如,任何群都可以通过给予它离散拓扑被认为是拓扑群,蕴涵了关于拓扑群适用于所有群的定理。实际上,分析学家更偏好被代数学家作为离散群来研究的平常的非拓扑群。在某些情况下,这可有用的应用,例如组合上Pontryagin对偶性。

0维流形(或微分流形或解析流形)就只是离散拓扑空间。在前面段落的精神下,我们可以把任何离散群看作0维李群。

尽管离散空间从拓扑学的角度看没有什么令人兴奋的,可以却可以从它们构造有趣的空间。例如,可数无限多个自然数离散空间的乘积同胚于无理数空间,带有同胚给出自连分数展开。可数多个离散空间{0,1}的乘积同胚于康托尔集合;并且事实上一致同胚于康托尔集合,如果我们在乘积上使用乘积一致。这种同胚给出自数字的三进制表示。(参见康托尔空间)。

在数学基础中,{0,1}乘积的紧致性质的研究是超滤子原理的拓扑途径的中心,它是弱形式的选择公理。

在某种意义上,离散拓扑的对立者是密着拓扑(也叫做“不可分拓扑”),它有最少可能数目的开集(就是空集和空间自身)。这里的离散拓扑是始对象和自由对象,而不可分拓扑是终对象或cofree对象:所有从拓扑空间到不可分空间的函数都是连续的。


邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 三傻大闹宝莱坞《三傻大闹宝莱坞》(英语:3 Idiots)是2009年一部宝莱坞喜剧影片,改编自印度畅销书作家奇坦·巴哈特(英语:Chetan Bhagat)的处女作小说《五分生(英语:Five Point Someone)》(Five Point
  • 梅西大学梅西大学(英文:Massey University,毛利文:Te Kunenga ki Pūrehuroa),成立于1927年,是新西兰最大的综合性研究大学,也是新西兰唯一一所真正的全国性大学。不包括远程学生,梅西是新西
  • 寇热Q型流感或羊流感(英语:Q fever或Goat flu),又称Q热或寇热,是指一种在荷兰爆发的新流感。这种流感由贝纳氏立克次体(学名:Coxiella burnetii)细菌引起 。这种流感能够通过羊群传染给
  • 促发促发 ,大陆译作启动效应,是一种内隐记忆的效应,而这个效果是指受到一种刺激 (即知觉模式)时,会影响到另一个刺激的反应。Meyer和Schvaneveldt在1970年代初期的生殖实验 中,让研究
  • 中国农业银行中国农业银行股份有限公司(简称农业银行、农行,英语:Agricultural Bank of China Limited,缩写:ABC)是中华人民共和国的五大国有大型商业银行之一,资产在中国银行排名第三。2014年
  • 姚星彤姚星彤(英语:Helen Yao,1983年4月12日-)毕业于北京电影学院2001级表演系本科,曾在成龙担任导演并主演的动作电影《十二生肖》里担任女主角,出演当中的国宝鉴定专家Coco。
  • 尤尔根·克拉姆尼尤尔根·克拉姆尼(德语:Jürgen Kramny,1971年10月18日-)是一位德国前足球运动员及现任足球教练,曾执教于德甲俱乐部斯图加特。作为职业球员期间,他也曾先后代表斯图加特、纽伦堡及
  • 宗室果齐斯欢宗室果齐斯欢(满语:ᡠᡴᠰᡠᠨ ᡤᠣᠴᡳᠰᡥᡡᠨ,穆麟德:,太清:;1768年3月15日-1828年10月18日,乾隆三十三年正月二十七日寅时-道光八年九月初十日丑时),字友三,号益亭。清朝宗室镶蓝旗
  • 阿尔克西拉乌斯二世阿尔克西拉乌斯二世(残暴者)(英语:Arcesilaus II of Cyrene),巴图斯王朝第四任君主。公元前570年统治库勒尼。因兄弟矛盾,另建巴尔卡(Barca)。他败于利比亚,并被其兄勒阿尔库斯(Learchu
  • 黄金眼007《黄金眼007》(日版名:ゴールデンアイ 007,英文版名:GoldenEye 007)是一款由Rare开发,根据1995年詹姆斯·邦德电影《007:黄金眼》改编的第一人称射击游戏。游戏于1997年8月25日在任