离散空间

✍ dations ◷ 2025-04-26 12:47:58 #点集拓扑学,拓扑空间性质

在拓扑学和相关数学领域中,离散空间是特别简单的一种拓扑空间,在其中点都在特定意义下是相互孤立的。

给定集合:

对于任何 x , y X {displaystyle x,yin X}  := {1/ :  = 1,2,3,...} (带有从实直线继承来的度量,并给出为d(,) = | − |)。明显的,这不是离散度量;还有这个空间不是完备的并因袭作为一致空间不是离散的。然而它作为拓扑空间是离散的。我们称是“拓扑离散”而非“一致离散”或“度量离散”。

此外还有:

任何从离散拓扑空间到另一个拓扑空间的函数是连续函数,任何从离散一致空间到另一个一致空间的函数是一致连续的。就是说,在拓扑空间和连续映射范畴中,或在一致空间和一致连续映射范畴内,离散空间是集合上的自由对象。这些性质是更广泛现象的实例,在其中离散结构通常自由于集合上。

对于度量空间,事情更加复杂,因为依赖于所选择的态射有很多度量空间范畴。离散度量空间当然是自由的,在态射都是一致连续映射或连续映射的时候,但是这没有说对度量结构有价值的事情,只针对了一致或拓扑结构。与度量结构更有关的范畴可以通过把态射限制为利普希茨连续映射或短映射来找到;但是,这些范畴没有自由对象(在多于一个元素的时候)。但是,离散度量空间在有界度量空间和利普希茨连续映射范畴内是自由的,并且它在有界于1的度量空间和短映射范畴是自由的。就是说,从离散度量空间到另一个有界度量空间的函数是利普希茨连续的,而任何从离散度量空间到另一个有界于1的度量空间的函数是短映射。

在其他方向上,从拓扑空间到离散空间的函数是连续的,当且仅当它是局部常数函数,在所有的点都有在其上的邻域是常数的意义上。

离散结构通常用做不承载任何其他自然拓扑、一致或度量的集合上“缺省结构”。例如,任何群都可以通过给予它离散拓扑被认为是拓扑群,蕴涵了关于拓扑群适用于所有群的定理。实际上,分析学家更偏好被代数学家作为离散群来研究的平常的非拓扑群。在某些情况下,这可有用的应用,例如组合上Pontryagin对偶性。

0维流形(或微分流形或解析流形)就只是离散拓扑空间。在前面段落的精神下,我们可以把任何离散群看作0维李群。

尽管离散空间从拓扑学的角度看没有什么令人兴奋的,可以却可以从它们构造有趣的空间。例如,可数无限多个自然数离散空间的乘积同胚于无理数空间,带有同胚给出自连分数展开。可数多个离散空间{0,1}的乘积同胚于康托尔集合;并且事实上一致同胚于康托尔集合,如果我们在乘积上使用乘积一致。这种同胚给出自数字的三进制表示。(参见康托尔空间)。

在数学基础中,{0,1}乘积的紧致性质的研究是超滤子原理的拓扑途径的中心,它是弱形式的选择公理。

在某种意义上,离散拓扑的对立者是密着拓扑(也叫做“不可分拓扑”),它有最少可能数目的开集(就是空集和空间自身)。这里的离散拓扑是始对象和自由对象,而不可分拓扑是终对象或cofree对象:所有从拓扑空间到不可分空间的函数都是连续的。


邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 热带夜热带夜在日本气象厅的用语里,是指夜间的最低气温在摄氏25度以上。在热带夜时,因为炎热而导致失眠的事件往往不少。受到近年全球变暖的影响,热带夜的日数正在不断增加。例如:东京
  • 伍德拉克岛伍德拉克岛是巴布亚新几内亚的岛屿,属于基里维纳群岛的一部分,由米尔恩湾省负责管辖,面积739平方公里,岛上最高点海拔410米。
  • 亚马逊河豚亚马逊河豚(学名:)通称 亚河豚,也称 粉红河豚,英文俗称 boto,是亚马逊河及奥里诺科河水系特有的物种,现存体形最大的淡水豚。在 IUCN《濒危物种红色名录》中又以 Amazon Dolphin, B
  • 威福·伯明莱安托尼·威福·伯明莱(英语:Anthony Wilford Brimley,1934年9月27日-),常呼作“威福·伯明莱”,是一位美国演员。他曾参演过多部知名作品,如1979年电影《中国综合症》、1982年电影《
  • 21卫门《21卫门》是藤子·F·不二雄的漫画作品,并改编为动画及动画电影。漫画最早连载于1968年至1969年的《周刊少年Sunday》,共有56话。并于1971年到1972年,集结为首版的单行本3卷,19
  • 杰伦·杨杰伦·拉沙德·杨(英语:Jerran Rashad Young,1991年11月25日-),出生于美国,现役美国职业篮球运动员,现效力于ABL联盟的宝岛梦想家,场上位置为小前锋。
  • 伯尔沃内什蒂乡坐标:44°48′N 22°41′E / 44.800°N 22.683°E / 44.800; 22.683伯尔沃内什蒂乡(罗马尼亚语:Comuna Bâlvănești, Mehedinți),是罗马尼亚的乡份,位于该国西南部,由梅赫丁茨县
  • 吕胤昌吕胤昌(1560年-?,“胤”汉语拼音yìn),明朝政治人物、戏曲学家。字玉绳,号姜山,浙江余姚人。大学士吕本之后,吕兑与孙镮的儿子,浙江余姚人。远祖新昌人。明万历十年(1582年)考中举人。明
  • 德米特里·德米特里耶维奇·马克苏托夫德米特里·德米特里耶维奇·马克苏托夫(俄语:Дми́трий Дми́триевич Максу́тов,罗马化:Dmitry Dmitrievich Maksutov,1896年4月23日-1964年8月12日)是
  • 詹弗兰科·达拉·巴尔巴詹弗兰科·达拉·巴尔巴(意大利语:Gianfranco Dalla Barba,1957年6月11日-),意大利男子击剑运动员。他曾获得1984年夏季奥运会男子佩剑团体金牌和1988年夏季奥运会男子佩剑团体铜