立方根

✍ dations ◷ 2025-08-13 21:35:52 #初等代数

如果一个数 x {\displaystyle x} 的立方等于 a {\displaystyle a} ,那么这个数 x {\displaystyle x} 就是 a {\displaystyle a} 的立方根,其中 a {\displaystyle a} 称为被开方数,而 x {\displaystyle x} 可以是正数、0、负数或虚数。例如3的立方为27,那么这个数3就是27的一个立方根(在实数范围内)。若 x {\displaystyle x} 是正实数,这个乘积相当于一个边长为 x {\displaystyle x} 的立方体的体积。

在实数系中,实数 a {\displaystyle a} 的立方根通常用 a 3 {\displaystyle {\sqrt{a}}} 表示,可读作“ a {\displaystyle a} 的立方根”,“立方根 a {\displaystyle a} ”或“根号 a {\displaystyle a} 开三次方”。

值得注意的是,某个实数 a {\displaystyle a} 的立方根在复数系中可能有1个,或者2个,或者3个,但在实数系中有且仅有1个。即在实数系中,实数 a {\displaystyle a} 的立方根唯一确定。习惯上,三次根号 a 3 {\displaystyle {\sqrt{a}}} 仅用来表示实数解。例如: 1 3 {\displaystyle {\sqrt{1}}} 仅表示实数1,而不表示复数 1 + 3 i 2 {\displaystyle {\frac {-1+{\sqrt {3}}i}{2}}} ,与 1 3 i 2 {\displaystyle {\frac {-1-{\sqrt {3}}i}{2}}}

即解 x 3 = 1 {\displaystyle x^{3}=1} ,解法如下:

ω = 1 + 3 i 2 {\displaystyle \omega ={\frac {-1+{\sqrt {3}}i}{2}}} ,则 ω 2 = 1 3 i 2 {\displaystyle \omega ^{2}={\frac {-1-{\sqrt {3}}i}{2}}} ;反之,令 ω = 1 3 i 2 {\displaystyle \omega ={\frac {-1-{\sqrt {3}}i}{2}}} ,则 ω 2 = 1 + 3 i 2 {\displaystyle \omega ^{2}={\frac {-1+{\sqrt {3}}i}{2}}} 。由以上的式子可看出 ω {\displaystyle \omega } 的特性有:

ω {\displaystyle \omega } 可代表 1 ± 3 i 2 {\displaystyle {\frac {-1\pm {\sqrt {3}}i}{2}}} 中的任何一数,即 ω {\displaystyle \omega } 为1的立方虚根。

1220年意大利人斐波那契第一次使用 R x {\displaystyle \operatorname {R} x} 来表达立方根, R {\displaystyle \operatorname {R} } 源于拉丁文radix的首字母,意思为“根、方根”。

十七世纪初时,法国数学家笛卡儿(1596-1650)在他的著作几何学中第一次使用不连续的“√”及“ ̄”表示根号,其中“√”为小写r的变形。到了18世纪中叶,数学家卢贝(Loubere)将前面的方根符号与线括号一笔写成,并将根指数写在根号的左上角,以表示高次方根(根指数为2时,省略不写)。从而,形成了我们现在所用的开方符号 x {\displaystyle {\sqrt {\color {white}x}}}

相关

  • 南乔治亚岛和南桑威奇群岛面积国家领袖立国历史南乔治亚和南桑威奇群岛(英语:South Georgia and the South Sandwich Islands;缩写:SGSSI)为英国在大西洋南部的海外属地。该属地由一连串既偏远且荒凉的岛
  • 米诺地尔米诺地尔(英语:Minoxidil)是一种钾通道开放药,这类药物在降压时常伴有反射性心动过速和心输出量的增加。对于血管扩张的作用具有选择性,见于冠状动脉,胃肠道血管和脑血管,而不扩张
  • 地中海气候地中海式气候,又称作地中海气候、副热带夏干气候,其分布于中纬度地区(约南北纬30至40度)的大陆西岸地区,包括地中海沿岸地区、黑海沿岸地区、美国的加利福尼亚州、澳洲西南部伯斯
  • 裘法祖裘法祖(1914年12月6日-2008年6月14日),浙江杭州人,中国著名外科学家,有“中国外科之父”之称,医学教育家,中科院院士,生前曾任武汉医学院副院长、院长,同济医科大学名誉校长,华中科技大
  • 十八面体在几何学中,十八面体(英语:octadecahedron)是指具有十八个面的多面体。正十八面体不存在,因为没有一个十八面体是正多面体,因此,名称不明确。然而,在化学中,十八面体主要指的是十八面
  • 阿道夫·巴斯蒂安阿道夫·巴斯蒂安(Adolf Bastian,1826年1月26日-1905年2月2日),德国19世纪的通才,对民族学和人类学的学科发展贡献极大。他也对当时的心理学发展有所贡献。他对美国著名人类学家法
  • 同盟国军事占领德国同盟国军事占领德国(德语:Besatzungszone)是指1945年5月8日纳粹德国向盟军宣告无条件投降后,被盟军分别军事占领的德国。盟军将德国分为四个占领区,分别归美、苏、英、法四国管制
  • NBA 2K15《NBA 2K15》是一款由Visual Concepts公司制作、2K Sports发行的篮球类电子游戏。本游戏于2014年10月7日首先发行。游戏在PlayStation 3、PlayStation 4、Xbox One、Xbox 36
  • 文言词 (西班牙语)文言词(Cultismo)在传统的西班牙语言学中指与其希腊语或拉丁语词源词形中密联系的词,这类词不遵循自俗拉丁语演变至卡斯蒂利亚语的一般规律。这些词通常是出于文化、文学或科学
  • 上施韦恩巴赫上施韦恩巴赫(德语:Oberschweinbach)是德国巴伐利亚州的一个市镇。总面积7.24平方公里,总人口1640人,其中男性792人,女性848人(2011年12月31日),人口密度227人/平方公里。