错动型板块边界

✍ dations ◷ 2025-02-23 15:07:51 #错动型板块边界
转换断层(英语:Transform fault ),又称为转形断层或错动型板块边界,是一系列沿着张裂型板块边界平行排列、把洋中脊走向切割为不同块段的一种大规模水平位移断层。转型断层形成的断裂带通常长达数千千米,宽约100到200千米,在海底表现为线形陡崖,两侧地形高度差可达两千米以上或更多。转型断层造成的板块水平位移量,如果以电磁勘探的结果和两侧的洋中脊轴比较,多者可以达到数百千米。转换断层命名的原因是来自于其可以“转换”两个板块间运动方式的特质。板块间的相对运动,遇到转换断层之后,就有机会转变成另一种型式的相对运动。例如,一个转换断层可以使原本远离两段洋中脊的板块张裂,转换为拉近两段洋中脊的对向运动。地球上的磁场的强度会随着时间变化,产生的区域性变化称为地磁异常,地磁异常会纪录该地区岩石在形成时的地磁方向。1950年代开始,包括加州大学洛杉矶分校的海洋学教授维克多·瓦基耶(英语:Victor Vacquier)在内的一些科学家开始利用二战时期遗留下来的磁强计,对这些地磁异常做定量的观测。之后,随着1950年代全球地磁异常分布调查范围覆盖的逐渐完备,科学家发现洋中脊两侧会出现条状、类似斑马纹路的磁條帶(英语:Magnetic Stripe)。这些磁带后来被认为是海底扩张的结果:洋中脊会往两侧产生新的地壳、新的岩石,这些陆续产生的岩石会分别记录下产生当时地磁当下的方向。不过,这些磁带的平行排列部分延续并不长。许多科学家迅速注意到,每隔一段距离,同一条磁带就会出现断裂,发生前后两段磁带错位约数百千米的事件;与此同时,洋中脊也发生的类似的位移情况。最初,这种情况被归咎于“某种规模较大的走滑断层”的作用,认为转换断层周围磁带的错位是后期的错段走滑之结果。1965年,加拿大地质学家威尔逊在著名论文《一种新的断层分类与其对大陆漂移的影响》(英语:A new class of faults and their bearing on continental drift)中提出说法,认为造成磁带错位的是一种命名为“转换断层”的新品种断层,不是走滑断层:磁带的错开是因为生成时就母洋中脊受转换断层影响的关系,不是后天造成。威尔逊从李德(英语:Harry Fielding Reid)的断层弹性回跳理论出发,他发现洋中脊附近断层的行为并不符合其理论中关于物体错位和其他地质标记(英语:Geological Marker)位移的典型模式,而此二者都是地质学中“走滑”一概念的来源。威尔逊发现,不同于走滑断层,这些新种断层会在传统断层结构中、位移地质标记(英语:Offset Geological Marker)标记的出现处出现相反方向的走滑。还有,相对于走滑断层会一次移动同一磐上所有物质的特性,转换断层并不会移动二洋中脊,也不会增加二洋中脊之间的距离──这一点获得了既有地震震源位置观测结果的支持。1967年,美国哥伦比亚大学教授赛克斯以洋中脊周围震源机制解的分析结果验证了转换断层的假说。机制解显示在大西洋洋中脊的地震中,的确出现了如转换断层理论预料的错动情况,而且此些错动情况与传统走滑断层理论所会预测的走滑方向相反。转换断层和走滑断层最大的差异在于板块移动的位置、方式及动力来源。转换断层与走滑断层在板块错动位置上的差异在于断层线外侧,板块移动的方向是否和内侧一致。走滑断层的错动是沿着整条断裂线发生的,两侧的两段洋中脊之间的距离将随时间逐渐加大;如果由走滑断层引起地震,则整个岩层破裂面都会发生地震。但是,对于转换断层而言,虽然洋中脊两侧海底不断扩张,断层两侧洋中脊之间的距离并不会加大。错动与频繁的地震活动只会发生于本条目首图中由于扩张方向相反而产生错动,以红色线段标示的转换断层段。在红线以外的地方,因为海底的扩张方向相同,因此仅有裂痕而无错动,且甚少发生地震,恰好与走滑断层所造成的影响相反。转型断层与走滑断层在板块移动方式上的差异在于位移的大小是否会和位于断层线的位置有关系。一般走滑断层的位移,向着两端是逐渐减弱、慢慢消失的。而转换断层向两端并不存在减弱的现象,而是在两个端点戛然终止,转换为另一形式的运动(通常是洋中脊的局部拉张作用)。在动力来源方面,转换断层和走滑断层也有所差异。走滑断层,和逆断层、正断层等其他种断层相仿,位移的动力来自于岩石的应力。然而转换断层不同,转换断层的动力来自于板块之间的张裂运动。因此,影响转换断层移动速率的因子主要来自于该地区张裂的激烈性。除此之外,洋中脊的分段长度与与转换断层的张裂速度之间会有一定比例大小关系,佐证转型断层的特征应与洋中脊的张裂性质有关。转换断层的完整构造切穿整个岩石圈,所形成的地形景观甚为巨大。沿洋底转换断层所发育的槽谷及崖壁,有的高度差可达2000米以上。如果以传统对海洋地壳的分层来看,转换断层的破裂面通常可以完整切穿深海沉积物层以及中部的玄武岩质层,在某些出露,甚至可以观察到下层辉绿岩的标本;可以说,转换断层可以提供典型且相当完整的海洋地壳剖面。一个典型转换断层的崖壁,如果以拖采进行观察,由上而下通常可以依序观察到这几种岩层的分布:转换断层通常伴有强烈的动力变质作用。拖采得的标本经常观察到被角砾岩化、糜棱岩化或片理化的痕迹,有些岩石还会出现微型褶皱。可见,转换断层是一种重要的变质带与构造形变地带。由于剪切作用与变质作用,转换断层有机会使岩石的磁性丧失,故沿着转换断层常常可以发现缺失洋中脊磁异常的区域,这些无磁地区通常位于断层面向两边延伸10到30千米左右。除此之外,某些转换断层地带的地壳明显较薄,厚仅约2到4千米。转换断层的相关形成机制尚未明了,一般认为可能是由洋脊上不稳定处断开而产生的。不过2010年,苏黎世联邦理工学院的塔拉斯·戈亚(英语:Taras Gerya)教授发表的电脑模拟显示,转换断层可能是洋脊在扩张时于动态不稳定下渐渐弯曲而产生的。

相关

  • 吉尔伯特·赖尔吉尔伯特·赖尔(英语:Gilbert Ryle,1900年8月19日-1976年10月6日)是一名英国哲学家,是英国日常语言哲学中牛津学派的代表人物。他的著作《心的概念》被认为是日常语言学派的重要著
  • 尼采弗里德里希·威廉·尼采(德语:Friedrich Wilhelm Nietzsche/ˈniːtʃə/; 德语:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI"
  • 地球化学地球化学是使用化学原理和工具来解释主要地质系统,如地壳及其海洋背后机制的科学。地球化学领域扩展到了地球以外,涵盖整个太阳系,并且对于一些过程的理解做出了重要贡献,包括地
  • 学术论文论文是科学或者社会研究工作者在学术书籍或学术期刊上刊登的,用来进行科学研究和描述或呈现自己研究成果的文章。论文往往强调原创性的工作总结,但当然也可以是对前人工作总结
  • 特克卢喷灯特克卢喷灯(Teclu burner)是一种实验室用燃气喷灯,属于本生喷灯的一种变体,以罗马尼亚化学家尼可拉耶·特克卢(英语:Nicolae Teclu)命名。它能够提供比本生喷灯更炽热的火焰。管的
  • 加利福尼亚大学坐标:37°48′08″N 122°16′17″W / 37.802168°N 122.271281°W / 37.802168; -122.271281加利福尼亚大学(英语:University of California),简称加州大学(UC),建立于1868年,是美国
  • 限制性片段长度多态性在分子生物学中,限制性片段长度多态性(英语:restriction fragment length polymorphism, RFLP)具有两种涵义:一是DNA分子由于核苷酸序列的不同而产生的一种可以用来相互区别的性
  • 信史商朝(约公元前1600年) 已经开始是信史年代。而夏朝作为中国历史上第一个朝代虽多见于后世史书,亦有同时期的文物遗迹出土,但至今尚未发现同时期的文字记载,故夏代并未出现信史,
  • 克氏综合症克氏综合征(Klinefelter's syndrome)或称XXY、47XXY综合征、俗称次雄性综合征,是一系列由于男性有两条或两条以上的X染色体所导致的疾病。该疾病的主要特征是不孕。通常症状都
  • 齿龈齿龈音(舌尖中音)是舌尖音的一种。发音时,舌尖接触牙龈。如现代标准汉语的 d、t、n、l。英语的/t/,/d/塞音是齿龈塞音,但法语、俄语等语言的舌尖塞音会是齿音。得到IPA确认的齿龈