小斜方截半二十面体

✍ dations ◷ 2025-10-31 21:47:39 #小斜方截半二十面体
在几何学中,小斜方截半二十面体是一种半正多面体,由于其具有点可递的性质,因此属于阿基米德立体。它由20个正三角形面、30个正方形面、12个正五边形面、60个顶点和120条棱构成。其对偶多面体为鸢形六十面体。约翰内斯·开普勒在他1618年出版的《世界的和谐》中,将这个多面体命名为小斜方截半二十面体(rhombicosidodecahedron),可以看做是截角截半二十面体菱形(truncated icosidodecahedral rhombus)的缩写,由于小斜方截半二十面体可以看做是菱形三十面体透过截角变换后的像而得名,其中截半二十面体菱形(icosidodecahedral rhombus)是开普勒给予菱形三十面体的命名。 菱形三十面体透过截角变换后的像在拓朴学上可以产生两种不同的几何形状:左边为最直接的截半;中间是在五阶顶点截的较深的截半,其形成了均匀多面体;右边的是小斜方截半二十面体与菱形三十面体的对偶多面体——截半二十面体的复合体。小斜方截半二十面体是一种半正多面体,由三种正多边形组成,分别为正三角形面、正方形面和正五边形,每个顶点都是两个正方形、一个正三角形和一个五边形的公共顶点,在顶点图中可计为3.4.5.4,因此具有点可递的性质。由于其可以借由正十二面体透过扩展(英语:Expansion (geometry))变换,变换而成,因此又可以称为扩展(英语:Expansion (geometry))十二面体。由于此原因,小斜方截半二十面体在施莱夫利符号中可以用rr{5,3}来表示,其中,rr表示扩展(英语:Expansion (geometry))变换,{5,3}表示正十二面体,亦可以简写为 r { 5 3 } {displaystyle r{begin{Bmatrix}5\3end{Bmatrix}}} 。将一个正十二面体(正二十面体)三十条棱都切一刀,在二十(十二)个顶点处也切一刀,就可以得到一个小斜方截半二十面体。也可以透过将正二十面体移动到远离原点适当的距离,并且不改变面的大小,然后对偶多面体(正十二面体)也做相同动作,并且在剩余的空隙补上正方形也可以得到小斜方截半二十面体。一可以视为截半二十面体再次截半后的像。因此,小斜方截半二十面体具有与正二十面体相同数量的三角形和与正十二面体相同数量的五边形,且正方形恰好等于正二十面体或正十二面体边的数量。小斜方截半二十面体与小星型截角十二面体(英语:Small stellated truncated dodecahedron)、六复合五角星柱(英语:Compound of six pentagrammic prisms)以及十二复合五角星柱(英语:Compound of twelve pentagrammic prisms)共用相同的顶点布局。小斜方截半二十面体由上而下可以分成5层,如下图所示,靠近顶面的那层可形成一个正十边形,特别地,由于其对称性,因此每十条棱皆可以成为一个正十边形,整个小斜方截半二十面体共有十二个独立的十边形。位于笛卡尔坐标系原点且边长为2单位长的小斜方截半二十面体,其顶点坐标为:其中,φ =  1 + 5 2 {displaystyle {frac {1+{sqrt {5}}}{2}}} 为黄金分割率。因此,这个小斜方截半二十面体的外接球半径是这些点与原点的共同距离,即 ϕ 6 + 2 {displaystyle {sqrt {phi ^{6}+2}}} 。而这个值的一半更为常见,计做R,其值等于边长为1的小斜方截半二十面体之外接球半径,代入恒等式φn+2 = φn+1 + φn五次可以得到:一个边长为a的小斜方截半二十面体,其表面积A和体积V为:小斜方截半二十面体有两种二面角,一个为正五边形和正方形的交角,另一个为正三角形与正方形的交角:小斜方截半二十面体有6个特殊的正交投影,分别为于中心投影、于顶点上投影、于棱上投影(两种)和于面上投影(三种),其中“在正方形面上投影”以及“在正五边形面上投影”其对称性对应于A2 和 H2的考克斯特平面。小斜方截半二十面体也可以表示为球面镶嵌,并通过球极投影,投影到平面上。 这个投影是一个等角头影,虽然长度发生改变,但保留了角度资讯。 球面镶嵌上的直线投影到了平面后成为了弧线。小斜方截半二十面体是正十二面体经过扩展(英语:Expansion (geometry))变换后的结果,其他也是由正二十面体透过康威变换得到的多面体有:这个多面体在拓扑上与一系列顶点图为(3.4.n.4)的多面体和镶嵌相关,皆具有(*n32)的镜射对称性。詹森多面体中,有13个与小斜方截半二十面体相关,其中包括5个小斜方截半二十面体的分割,以及8个与小斜方截半二十面体类似但部分结构被旋转的结果:

相关

  • 83<< 80 81 82 83 84 85 86 87 88 89 >>83是82与84之间的自然数。
  • 玻璃碳玻璃碳(glassy carbon),是结合了玻璃和陶瓷的属性的非石墨化碳。特点是耐高温,高硬度(莫氏硬度7),低密度,低电阻,低摩擦,低导热性,高耐化学侵蚀性,不被气体和液体渗透。 玻璃碳作为电极
  • 导热热传导,是热能从高温向低温部分转移的过程,是 一个分子向另一个分子传递振动能的结果。各种材料的热传导性能不同,传导性能好的,如金属,还包括了自由电子的移动,所以传热速度快,可
  • 弗朗索瓦·韦达弗朗索瓦·韦达(法语:François Viète;拉丁语:Franciscus Vieta;1540年-1603年12月13日),16世纪法国最有影响的数学家之一。他的研究工作为近代数学的发展奠定了基础。他也是名律师
  • span class=nowrapSmClsub2/sub/span氯化亚钐是一种无机化合物,化学式为SmCl2。氯化亚钐可由氯化钐和金属钐共热得到:Kurt Rossmanith曾在THF溶液中,有萘存在时,用锂还原氯化钐得到氯化亚钐:氯化亚钐和水反应特别迅
  • 能源安全法国电力近9成来自核能和水力,进口交通被切断时能源安全较高能源安全是一国家安全名词,为能源所带来的潜在一切危害国家利益问题探讨。最常见能源安全问题是能源缺乏,尤其是无
  • 中龙目中龙目(学名:Mesosauria)是一类已灭绝的爬行动物。它们生活在大约2.99亿到2.70亿年前的早二叠纪。它们是最早的水栖爬行动物之一,在陆地上演化过后再度返回水中。中龙目具有超过
  • 铌酸锂铌酸锂(化学式:LiNbO3)是一种偏铌酸盐。其单晶是光波导,移动电话,压电传感器,光学调制器和各种其它线性和非线性光学应用的重要材料。铌酸锂是一种不溶于水的无色固体。它具有一个
  • 台湾语言保护台湾语言保护主要以台湾本土语言为号召的语言复兴运动。目的是应对各地母语环境因国语运动而急剧衰落濒临灭绝的现状,并呼吁官方保护以各族群母语为载体的戏曲曲艺和民间文学
  • 琳赛·萝涵林赛·摩根·罗韩(英语:Lindsay Morgan Lohan,发音: /ˈloʊ.ən/,生名:Lindsay Dee Lohan,1986年7月2日-)是一位美国女演员、模特和录音艺术家。她3岁时作为儿童时尚模特开始了自己