首页 >
拉丁方阵
✍ dations ◷ 2025-02-23 01:28:24 #拉丁方阵
拉丁方阵(英语:Latin square)是一种 n × n 的方阵,在这种 n × n 的方阵里,恰有 n 种不同的元素,每一种不同的元素在同一行或同一列里只出现一次。以下是两个拉丁方阵举例:拉丁方阵有此名称是因为瑞士数学家和物理学家欧拉使用拉丁字母来做为拉丁方阵里的元素的符号。当一个拉丁方阵的第一行与第一列的元素按顺序排列时,此为这个拉丁方阵的标准型,英语称为"reduced Latin square, normalized Latin square, 或Latin square in standard form"。许多对于拉丁方阵的运算都会产生新的拉丁方阵。例如说,交换拉丁方阵里的行、交换拉丁方阵里的列、或是交换拉丁方阵里的元素的符号,都会得到一个新的拉丁方阵。交换拉丁方阵里的行、交换拉丁方阵里的列、或是交换拉丁方阵里的元素的符号所得的新的拉丁方阵与原来的拉丁方阵称为同型(isotopic)。同型(isotopism)是一个等价关系,因此所有的拉丁方阵所成的集合可以分成同型类别(isotopic class)的子集合,同型的拉丁方阵属于同一个同型类别,而不属于同一个同型类别的拉丁方阵则不同型。设有两个阶数相同(为)的拉丁方阵
A
1
=
(
a
i
,
j
(
1
)
)
n
×
n
,
A
2
=
(
a
i
,
j
(
2
)
)
n
×
n
{displaystyle A_{1}=(a_{i,j}^{(1)})_{ntimes n},A_{2}=(a_{i,j}^{(2)})_{ntimes n}}
,其中将所有放置位置相同的元素组合成一个元组,组合成一个新的矩阵
(
(
a
i
,
j
(
1
)
,
a
i
,
j
(
2
)
)
)
n
×
n
{displaystyle ((a_{i,j}^{(1)},a_{i,j}^{(2)}))_{ntimes n}}
。
当这个新的矩阵
(
(
a
i
,
j
(
1
)
,
a
i
,
j
(
2
)
)
)
n
×
n
{displaystyle ((a_{i,j}^{(1)},a_{i,j}^{(2)}))_{ntimes n}}
中每一个元素互不相同时,拉丁方阵
A
1
{displaystyle A_{1}}
和
A
2
{displaystyle A_{2}}
是互相正交的。
此时,
A
1
{displaystyle A_{1}}
和
A
2
{displaystyle A_{2}}
即为一对正交拉丁方。
而在阶数固定的情况下,所有两两正交的拉丁方所成的集合称为正交拉丁方族。根据前面所得到关于正交的定义,两个拉丁方阵相正交所得到的方阵为希腊拉丁方阵(Graeco-Latin square)。
事实上,并不是任意阶数的拉丁方都存在一对正交拉丁方,也就是说,并不是任意阶数的拉丁方均存在希腊拉丁方阵,n阶希腊拉丁方阵存在的充要条件是n+2不是2的幂,所以其实几乎所有的阶数都存在希腊拉丁方阵。若n阶拉丁方存在r个两两正交的拉丁方,那么
r
≤
n
−
1
{displaystyle rleq n-1}
。当该定理中的等号成立时,则该阶正交拉丁方族被称为完全的。
可以分析得到,当n为0或1时,存在无限多个正交的拉丁方,当n为2时,不存在正交拉丁方族。
此外,当n为6时,也不存在正交拉丁方族,这个结论是通过对三十六军官问题的尝试得到的。
三十六军官问题指的是是否有一个解决方案使得来自6个不同地区的6个不同军衔的军官排成
6
×
6
{displaystyle 6times 6}
的方阵,其中每一行每一列的军官都来自于不同的地区且具有不同的军衔。
而该问题的方案即为6阶正交拉丁方的个数,该问题于1901年被Gaston Tarry证明为无解。
除了上述三种情况外,当阶数小于等于8时,均存在有n-1个正交的拉丁方。如当n=3时,存在两个正交的拉丁方。
[
1
2
3
2
3
1
3
1
2
]
{displaystyle {begin{bmatrix}1&2&3\2&3&1\3&1&2\end{bmatrix}}}
[
1
2
3
3
1
2
2
3
1
]
{displaystyle {begin{bmatrix}1&2&3\3&1&2\2&3&1\end{bmatrix}}}
当阶数更多时
n
≤
8
{displaystyle nleq 8}
,可以通过正交拉丁方表得到正交拉丁方族。事实上,当阶数n是质数或者质数的幂次时,必定存在n-1个正交拉丁方,另外,当n除以4余1或2,而且n不是两个平方数的和(0也算作平方数),就一定不存在n-1个正交的拉丁方,而对于10阶的情形,已经确定至少存在2个正交的拉丁方,但是不存在9个正交的拉丁方,因此10阶正交拉丁方的个数最少是2,最大是8(因为到目前为止,连3个正交的10阶拉丁方都还没找到,所以有猜测是10阶正交拉丁方的个数是2),对于12阶,已经确定至少存在5个正交的拉丁方了。目前,没有公式可以计算 n × n 的拉丁方阵的数量,而当前最精确的公式在当 n 很大时,拉丁方阵的数量的最精确的估计值,其上下界也相差很远。
具体估计公式为:
∏
k
=
1
n
(
k
!
)
n
/
k
≥
L
n
≥
(
n
!
)
2
n
n
n
2
{displaystyle prod _{k=1}^{n}(k!)^{n/k}geq L_{n}geq {frac {(n!)^{2n}}{n^{n^{2}}}}}以下是已知的数值。当 n 增加时,拉丁方阵的数量急速增多。
相关
- 卫生福利部卫生福利部(简称卫福部)是中华民国有关公共卫生、医疗与社会福利事务的最高主管机关,同时监督各县市政府卫生与社会局(处)。其前身为1971年成立的“行政院卫生署”,2013年改制为部
- 肺出血肾炎综合征古德巴斯捷氏综合征(Goodpasture syndrome,GPS),又称古德巴斯捷氏病(Goodpasture's disease)、肺出血肾炎综合征、抗肾小球基底膜抗体病(anti-glomerular basement antibody diseas
- 社会生活生活是人类活着的期间所做的一切行为的总称。社会生活是日常生活、都市生活、政治生活、文化生活、艺术生活、宗教生活的总称。社会生活是一个整体,各行各业的工作,对社会来说
- 核电站核电站即核能发电厂,或称核电站。是一种以核反应为热力源的热电厂,和其他的热电厂一样,以热能驱动蒸汽涡轮发动机并连接至发电机发电。根据国际原子能机构的报告,截至2014年4月2
- 美国国会多数党(53)少数党(47)多数党(233)少数党(198)空缺(4)美国国会(英语:United States Congress)是《美国宪法》规定的立法机构,位于国会大厦。根据《美国宪法》,美国是一个三权分立的国家,其中
- 中洋脊洋中脊(Mid-ocean ridge),又称洋脊、大洋中脊、中央海岭,是位于全球海中张裂性板块边界的一系列火山结构系统,也是世界上最长的山脉、海底山脉,长达80,000千米(49,700英里),其中连续
- 经典中心法则分子生物学的中心法则(英语:The central dogma of molecular biology,又译分子生物学的中心教条),首先由佛朗西斯·克里克于1958年提出,并于1970年在《自然》上的一篇文章中重申:中
- 珀拉斯凯县普瓦斯基县(Pulaski County, Georgia)是美国乔治亚州中部的一个县。面积647平方公里。根据美国2000年人口普查估计,共有人口9,588人,2007年估计的居民数为9843人。县治和肯斯维(H
- 亚硫酸盐亚硫酸盐是亚硫酸所成的盐,含有亚硫酸根离子SO32−。亚硫酸根离子是强还原剂,因此可以利用强还原剂(如溴、酸化过锰酸盐、酸化重铬酸盐)来检验。会使溴水褪色。绝大多数葡萄酒中
- 三国时代朝鲜半岛三国时代(朝鲜语:삼국시대)是朝鲜半岛427年到公元660年之间高句丽(前37年-668年)、百济(前18年-660年)、新罗(前57年-935年)三国鼎立的历史时期。三国的文化和语言相通。宗教原