首页 >
拉丁方阵
✍ dations ◷ 2025-01-23 02:21:38 #拉丁方阵
拉丁方阵(英语:Latin square)是一种 n × n 的方阵,在这种 n × n 的方阵里,恰有 n 种不同的元素,每一种不同的元素在同一行或同一列里只出现一次。以下是两个拉丁方阵举例:拉丁方阵有此名称是因为瑞士数学家和物理学家欧拉使用拉丁字母来做为拉丁方阵里的元素的符号。当一个拉丁方阵的第一行与第一列的元素按顺序排列时,此为这个拉丁方阵的标准型,英语称为"reduced Latin square, normalized Latin square, 或Latin square in standard form"。许多对于拉丁方阵的运算都会产生新的拉丁方阵。例如说,交换拉丁方阵里的行、交换拉丁方阵里的列、或是交换拉丁方阵里的元素的符号,都会得到一个新的拉丁方阵。交换拉丁方阵里的行、交换拉丁方阵里的列、或是交换拉丁方阵里的元素的符号所得的新的拉丁方阵与原来的拉丁方阵称为同型(isotopic)。同型(isotopism)是一个等价关系,因此所有的拉丁方阵所成的集合可以分成同型类别(isotopic class)的子集合,同型的拉丁方阵属于同一个同型类别,而不属于同一个同型类别的拉丁方阵则不同型。设有两个阶数相同(为)的拉丁方阵
A
1
=
(
a
i
,
j
(
1
)
)
n
×
n
,
A
2
=
(
a
i
,
j
(
2
)
)
n
×
n
{displaystyle A_{1}=(a_{i,j}^{(1)})_{ntimes n},A_{2}=(a_{i,j}^{(2)})_{ntimes n}}
,其中将所有放置位置相同的元素组合成一个元组,组合成一个新的矩阵
(
(
a
i
,
j
(
1
)
,
a
i
,
j
(
2
)
)
)
n
×
n
{displaystyle ((a_{i,j}^{(1)},a_{i,j}^{(2)}))_{ntimes n}}
。
当这个新的矩阵
(
(
a
i
,
j
(
1
)
,
a
i
,
j
(
2
)
)
)
n
×
n
{displaystyle ((a_{i,j}^{(1)},a_{i,j}^{(2)}))_{ntimes n}}
中每一个元素互不相同时,拉丁方阵
A
1
{displaystyle A_{1}}
和
A
2
{displaystyle A_{2}}
是互相正交的。
此时,
A
1
{displaystyle A_{1}}
和
A
2
{displaystyle A_{2}}
即为一对正交拉丁方。
而在阶数固定的情况下,所有两两正交的拉丁方所成的集合称为正交拉丁方族。根据前面所得到关于正交的定义,两个拉丁方阵相正交所得到的方阵为希腊拉丁方阵(Graeco-Latin square)。
事实上,并不是任意阶数的拉丁方都存在一对正交拉丁方,也就是说,并不是任意阶数的拉丁方均存在希腊拉丁方阵,n阶希腊拉丁方阵存在的充要条件是n+2不是2的幂,所以其实几乎所有的阶数都存在希腊拉丁方阵。若n阶拉丁方存在r个两两正交的拉丁方,那么
r
≤
n
−
1
{displaystyle rleq n-1}
。当该定理中的等号成立时,则该阶正交拉丁方族被称为完全的。
可以分析得到,当n为0或1时,存在无限多个正交的拉丁方,当n为2时,不存在正交拉丁方族。
此外,当n为6时,也不存在正交拉丁方族,这个结论是通过对三十六军官问题的尝试得到的。
三十六军官问题指的是是否有一个解决方案使得来自6个不同地区的6个不同军衔的军官排成
6
×
6
{displaystyle 6times 6}
的方阵,其中每一行每一列的军官都来自于不同的地区且具有不同的军衔。
而该问题的方案即为6阶正交拉丁方的个数,该问题于1901年被Gaston Tarry证明为无解。
除了上述三种情况外,当阶数小于等于8时,均存在有n-1个正交的拉丁方。如当n=3时,存在两个正交的拉丁方。
[
1
2
3
2
3
1
3
1
2
]
{displaystyle {begin{bmatrix}1&2&3\2&3&1\3&1&2\end{bmatrix}}}
[
1
2
3
3
1
2
2
3
1
]
{displaystyle {begin{bmatrix}1&2&3\3&1&2\2&3&1\end{bmatrix}}}
当阶数更多时
n
≤
8
{displaystyle nleq 8}
,可以通过正交拉丁方表得到正交拉丁方族。事实上,当阶数n是质数或者质数的幂次时,必定存在n-1个正交拉丁方,另外,当n除以4余1或2,而且n不是两个平方数的和(0也算作平方数),就一定不存在n-1个正交的拉丁方,而对于10阶的情形,已经确定至少存在2个正交的拉丁方,但是不存在9个正交的拉丁方,因此10阶正交拉丁方的个数最少是2,最大是8(因为到目前为止,连3个正交的10阶拉丁方都还没找到,所以有猜测是10阶正交拉丁方的个数是2),对于12阶,已经确定至少存在5个正交的拉丁方了。目前,没有公式可以计算 n × n 的拉丁方阵的数量,而当前最精确的公式在当 n 很大时,拉丁方阵的数量的最精确的估计值,其上下界也相差很远。
具体估计公式为:
∏
k
=
1
n
(
k
!
)
n
/
k
≥
L
n
≥
(
n
!
)
2
n
n
n
2
{displaystyle prod _{k=1}^{n}(k!)^{n/k}geq L_{n}geq {frac {(n!)^{2n}}{n^{n^{2}}}}}以下是已知的数值。当 n 增加时,拉丁方阵的数量急速增多。
相关
- 四氯乙烯四氯乙烯,又称全氯乙烯,是一种有机化学品,被广泛用于干洗和金属除油,也被用来制造其他化学品和消费品。室温下是不易燃的液体。容易挥发,有刺激的甜味。很多人在空气含有百万分之
- 宋音陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧ 小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧ 书法 ‧ 飞白书笔画 ‧
- 公共行政学公共行政学(Public Administration),又称行政学。主要结合政治学和管理学为其理论基础。简言之,行政即是公务的推行、政府的管理,举凡政府机关或公务机构的业务,如何使之有效的加
- 中世纪科学史中世纪科学史是指在中世纪,星象、药物、数学等科学在当时都相当的活跃,但是,由于古代的文化(在罗马及伊斯兰的落没之前的时期)已经存在有许多的科学基础,所以研究科学的方法才能
- 神经激素神经激素是由神经内分泌细胞(也称为神经分泌细胞)产生并释放到血液中的任何激素。它们被分泌到循环系统中发挥作用,但是它们也可以具有神经递质的作用或其他作用,例如自分泌(自身
- 原虫原生动物是动物界中最低级、最原始、最简单的一类动物,属于原生生物当中较接近动物的一类,简称原虫。身体由单个细胞所构成,因此也被称为单细胞动物。多营自由生活,也有的生活在
- 诺氏疟原虫诺氏疟原虫(Plasmodium knowlesi,可缩写为P. knowlesi)又称猴疟虫,是一种常见于东南亚的灵长类疟原虫。它能在食蟹猴体内引起疟疾,但它也可能自然或人为地感染人类。由于卵形疟原
- 尹帝文尹帝文(韩语:윤제문,1970年3月9日-),韩国男演员,名字常被译为尹济文。2016年5月23日因在红绿灯前停车睡觉而被警方调查并被查出了酒驾,随后通过经纪公司为酒驾一事进行了公开道歉。2
- span class=nowrapCrsub2/sub(SOsub4/sub)sub&g|200px|alt=|]]716.45 g/mol(十八水合物) g·mol⁻¹硫酸铬(英语:Chromium(III) sulfate)是一种无机化合物,化学式为Cr2(SO4)3。硫酸铬水合物经常会以3+的错离子形式存在,其外观呈
- A12A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码A12(矿物质补充剂)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collab