首页 >
三对角
✍ dations ◷ 2025-12-01 05:03:39 #三对角
在线性代数中,一个三对角矩阵是矩阵的一种,它“几乎”是一个对角矩阵。准确来说:一个三对角矩阵的非零系数在主对角线上,或比主对角线低一行的对角线上,或比主对角线高一行的对角线上。例如,下面的是三对角矩阵:由三对角矩阵得来的行列式,也被称为一个 continuant。三对角矩阵是海森堡矩阵。尽管一般的三对角矩阵不一定是对称或埃尔米特矩阵,许多解线性代数问题时出现的矩阵却往往有这些性质。进一步如果一个实三对角矩阵 A 满足 ak,k+1 ak+1,k > 0,所以它元素的符号都为正,从而相似于一个埃尔米特矩阵,这样特征值都是实数。后一个推论如果我们将条件 ak,k+1 ak+1,k > 0 换为 ak,k+1 ak+1,k ≥ 0,结论仍然成立。所有 n × n 三对角矩阵的集合组成一个 3n-2 维向量空间。许多线性代数算法应用于对角矩阵时所需计算量特别少,这种改进也经常被三对角矩阵继承。譬如,一个 n 阶三对角矩阵 A 的行列式能用 continuant(Continuant)的递归公式计算:这里
det
[
A
]
{
1
,
…
,
k
}
{displaystyle det_{{1,ldots ,k}}}
是第 k 个主子式,即
[
A
]
{
1
,
…
,
k
}
{displaystyle _{{1,ldots ,k}}}
是由 A 最开始的 k 行 k 列组成的子矩阵。用此方法计算三对角矩阵所需计算量是线性 n ,然而对于一般的矩阵复杂度是 n 的 3 次方。一个将一般矩阵变成海森堡型的变换,将厄密特矩阵变成三对角矩阵。从而,许多特征值算法运用到厄密特矩阵上,第一步将输入的厄密特矩阵变成三对角矩阵。一个三对角矩阵利用特定的存储方案比一般矩阵所用的存储空间也少得多。例如,LAPACK Fortran包将一个 n-维非对称三对角矩阵存为三个 1-维数列,其中一个长 n 包含对角元素,其它两个长为 n− 1 包含下对角线和上对角线元素。三对角矩阵方程
A
x
=
b
,
b
∈
R
n
{displaystyle Ax=b,,bin mathbb {R} ^{n}}
,能用一种需要 O(n)次操作的特殊的算法解出来(Golub and Van Loan)。
相关
- 嗜冷生物嗜冷生物是嗜极生物的一种,能够在低温的环境保持生长和繁殖的能力。与之对比的是通常生活在高温环境的嗜热生物。嗜冷细菌在地球上分布很广,因为地球表层很大一片区域的温度都
- 2013年东南亚霾害2013年东南亚霾害为印尼苏门答腊多处的农民常以火大面积的烧芭(火耕)方式清理农地。烟雾随季风飘散,并影响新加坡、马来西亚等邻近东南亚国家环境污染灾害。霾害造成新加坡樟宜
- 字谷在字体排印学中,字怀(又称“字谷”)指字母构造中的全封闭或半封闭区域。 拉丁字母中包含有封闭字怀的有A、B、D、O、P、Q、R、a、b、d、e、g、o、p和q, 包含开放字怀的有c、f、
- 归纳推理归纳法或归纳推理(Inductive reasoning),有时叫做归纳逻辑,是论证的前提支持结论但不确保结论的推理过程。它基于对特殊的代表(token)的有限观察,把性质或关系归结到类型;或基于对反
- 海洋哺乳动物海洋哺乳动物(又称海兽)是指一些长时间在海里面生活或需要靠海洋中的资源为生的哺乳动物,包括海牛、儒艮、北极熊、海獭、海豹、海狮、海象、鲸鱼、海豚等。海洋哺乳动物不是生
- 隔膜膈膜可以指:
- 波特兰大学波特兰大学(University of Portland)是美国西岸俄勒冈州波特兰市大学公园(University Park)的一所私立罗马天主教大学,创立于1901年,学生约四千人,国际学生约占百分之三。波特兰大
- 原材料原材料在工业中是“原料”与“材料”的统称,特指有形的物质,原材料一词有时也用于代指直接被记录或观测下来的资料、数据或信息,比如说采访的笔记、试验的观测结果、直接记录的
- 欢迎来到北方《欢迎来到北方》 (法语: Bienvenue chez les Ch'tis) 是2008年一部由喜剧演员丹尼·伯恩自编自导自演的法国喜剧片。该片几乎打破了法国所有的票房记录。自2008年7月起的19
- zidovudine齐多夫定(英语:zidovudine),也称叠氮胸苷(英语:azidothymidine),简称 ZDV 或 AZT,是一种抗反转录病毒药物,用于治疗或预防艾滋病,通常会建议搭配其他抗反转录病毒药物一起使用。齐多夫
