狄拉克方程式

✍ dations ◷ 2025-11-30 17:58:21 #狄拉克方程式
理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-½粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}带有自旋-½的自由粒子的狄拉克方程的形式如下:其中 m {displaystyle m,} 是自旋-½粒子的质量, x {displaystyle mathbf {x} } 与 t {displaystyle t} 分别是空间和时间的坐标。狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑无场势自由粒子的薛定谔方程:薛定谔方程采用的时间项为一阶导数,而空间项为二阶导数,因此不具有洛伦兹协变性。若要符合洛伦兹协变性,很自然地需建构一具有空间项一阶导数的哈密顿量。而动量算符恰好是空间一阶导数。将动量算符代入式子中,从而得到i ℏ ∂ ψ ( x , t ) ∂ t = [ ℏ c i ( α 1 ∂ ∂ x 1 + α 2 ∂ ∂ x 2 + α 3 ∂ ∂ x 3 ) + β m c 2 ] ψ ( x , t ) ≡ H ψ ( x , t ) {displaystyle ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}}=leftpsi (mathbf {x} ,t)equiv Hpsi (mathbf {x} ,t)}亦可以矢量符号写为:其中的系数 α i {displaystyle alpha _{i}} 和 β {displaystyle beta } 不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数 α i {displaystyle alpha _{i}} 是矩阵,那么波函数 ψ ( x , t ) {displaystyle psi (mathbf {x} ,t)} 也不能是简单的标量场,而只能是N×1阶列矢量狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值同时,这些旋量的每一个标量分量 ψ i ( x , t ) {displaystyle psi _{i}(mathbf {x} ,t)} 需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系:满足以上条件的系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。也可以用狭义相对论惯用四维矩阵来理解,如四动量。在不同基中这些系数矩阵有不同形式,最常见的形式为:这里 σ i {displaystyle sigma _{i}} 即为泡利矩阵:因此系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 可进一步写为:按照量子场论的自然单位制习惯,设 ℏ = c = 1 {displaystyle hbar =c=1} ,狄拉克方程可写为:定义四个反对易矩阵γμ,μ=0,1,2,3(称为狄拉克矩阵)。其反对易关系为:利用上式可证明因此狄拉克方程可写成:i ℏ γ μ ∂ μ ψ − m c ψ = 0 {displaystyle ihbar gamma ^{mu }partial _{mu }psi -mcpsi =0}采取自然单位制习惯 ℏ = c = 1 {displaystyle hbar =c=1} ,则可将狄拉克方程写成:与上面给出的 α, β相对应,可以选择:若采用费曼斜线标记,比如偏微分符号 ∂ / {displaystyle {partial !!!{big /}}} (英语念作d-slash);其将狄拉克矩阵与各分量做乘积求和的计算,合并为一标有斜线之符号:可使狄拉克方程变成:若同时采用费曼斜线符号及自然单位制.mw-parser-output .serif{font-family:Times,serif}ħ = c = 1,狄拉克方程可写成一极为简单的形式:( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}以狄拉克公式来解释能量阶,会发现每个电子能级会有相对的负能级,但是实验上普通电子无法带有负能量,因此狄拉克假设负能量阶已被无限的负能电子海占据,所以观测的电子无法进入负能级。这假说有许多疑点,尤其是无限的电子海其实有接受更多电子的能级,所以无法防止负能级电子的产生。

相关

  • 蓄电池br /smallspan style=font-weight:normal;/span蓄电池(英语:Storage battery),俗称电瓶,又称可充电电池(英语:Rechargeable battery),泛指所有在电量用到一定程度之后可以被再次充电、反复使用的化学能电池的总称。之所以可以充电
  • 食部,为汉字索引中的部首之一,康熙字典214个部首中的第一百八十四个(九划的则为第九个)。就正体中文中,食部归于九划部首,而简体中文则把偏旁简化,成三划。食部只以左方、下方为部
  • 托玛斯·杰弗逊托马斯·杰斐逊(英语:Thomas Jefferson,1743年4月13日-1826年7月4日),美利坚合众国第三任总统(1801年─1809年)。同时也是《美国独立宣言》主要起草人,及美国开国元勋中最具影响力者
  • 外交部外交部是一个主权国家负责国家对外事务的专门政府机关,其部门主官称作外交部长(外长)或外交大臣(外相),为内阁成员之一,且通常被视为仅次于最高行政长官(总统制国家为总统,内阁制国家
  • 林鸿宣林鸿宣(1960年11月-),中国作物遗传学家。中国科学院上海生命科学研究院植物生理生态研究所研究员。生于海南海口,原籍海南文昌。1983年毕业于华南农业大学农学系,1986年、1994年在
  • 天道教天道教是朝鲜半岛的一个新兴宗教。天道教的前身是由崔济愚创立的东学。朝鲜王朝末期,1860年代的朝鲜王朝处于西方势力的威胁之下,崔济愚担心朝鲜传统的宗教将被天主教代替,综合
  • 互联网之子《互联网之子》(英语:The Internet's Own Boy:The Story of Aaron Swartz 又名:亚伦·斯沃茨的故事[台])是一部2014年的美国传记类纪录片,由布莱恩·耐本伯格自编自导[1]。该影片作为
  • 东京2019冠状病毒病东京都疫情(日语:東京都における2019年コロナウイルス感染症の流行/とうきょうとにおける2019ねんコロナウイルスかんせんしょうのりゅうこう),介绍日本的2019冠状
  • 均变论均变论(英语:Uniformitarianism,又称齐一论、古今一致论)是由查理斯·莱尔的《地质学原理》一书所提出,其理论是以英国人詹姆斯·哈顿在1785年和1789年所提出的渐变论所衍伸而来
  • 逃生梯逃生梯又称消防梯,为一种建筑设施作为火灾时的逃生通道,各国消防法多有规定设置,并列入建筑消防执照检查项目。逃生梯通常别于主要日常楼梯,以做为第二通道的特性设置,美国有诸多