狄拉克方程式

✍ dations ◷ 2025-01-23 09:28:17 #狄拉克方程式
理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-½粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}带有自旋-½的自由粒子的狄拉克方程的形式如下:其中 m {displaystyle m,} 是自旋-½粒子的质量, x {displaystyle mathbf {x} } 与 t {displaystyle t} 分别是空间和时间的坐标。狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑无场势自由粒子的薛定谔方程:薛定谔方程采用的时间项为一阶导数,而空间项为二阶导数,因此不具有洛伦兹协变性。若要符合洛伦兹协变性,很自然地需建构一具有空间项一阶导数的哈密顿量。而动量算符恰好是空间一阶导数。将动量算符代入式子中,从而得到i ℏ ∂ ψ ( x , t ) ∂ t = [ ℏ c i ( α 1 ∂ ∂ x 1 + α 2 ∂ ∂ x 2 + α 3 ∂ ∂ x 3 ) + β m c 2 ] ψ ( x , t ) ≡ H ψ ( x , t ) {displaystyle ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}}=leftpsi (mathbf {x} ,t)equiv Hpsi (mathbf {x} ,t)}亦可以矢量符号写为:其中的系数 α i {displaystyle alpha _{i}} 和 β {displaystyle beta } 不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数 α i {displaystyle alpha _{i}} 是矩阵,那么波函数 ψ ( x , t ) {displaystyle psi (mathbf {x} ,t)} 也不能是简单的标量场,而只能是N×1阶列矢量狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值同时,这些旋量的每一个标量分量 ψ i ( x , t ) {displaystyle psi _{i}(mathbf {x} ,t)} 需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系:满足以上条件的系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。也可以用狭义相对论惯用四维矩阵来理解,如四动量。在不同基中这些系数矩阵有不同形式,最常见的形式为:这里 σ i {displaystyle sigma _{i}} 即为泡利矩阵:因此系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 可进一步写为:按照量子场论的自然单位制习惯,设 ℏ = c = 1 {displaystyle hbar =c=1} ,狄拉克方程可写为:定义四个反对易矩阵γμ,μ=0,1,2,3(称为狄拉克矩阵)。其反对易关系为:利用上式可证明因此狄拉克方程可写成:i ℏ γ μ ∂ μ ψ − m c ψ = 0 {displaystyle ihbar gamma ^{mu }partial _{mu }psi -mcpsi =0}采取自然单位制习惯 ℏ = c = 1 {displaystyle hbar =c=1} ,则可将狄拉克方程写成:与上面给出的 α, β相对应,可以选择:若采用费曼斜线标记,比如偏微分符号 ∂ / {displaystyle {partial !!!{big /}}} (英语念作d-slash);其将狄拉克矩阵与各分量做乘积求和的计算,合并为一标有斜线之符号:可使狄拉克方程变成:若同时采用费曼斜线符号及自然单位制.mw-parser-output .serif{font-family:Times,serif}ħ = c = 1,狄拉克方程可写成一极为简单的形式:( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}以狄拉克公式来解释能量阶,会发现每个电子能级会有相对的负能级,但是实验上普通电子无法带有负能量,因此狄拉克假设负能量阶已被无限的负能电子海占据,所以观测的电子无法进入负能级。这假说有许多疑点,尤其是无限的电子海其实有接受更多电子的能级,所以无法防止负能级电子的产生。

相关

  • 耐药性耐药性(drug resistance)是指药物的治疗疾病或改善病人征状的效力降低。当投入药物浓度不足,不能杀死或抑制病原时,残留的细菌可能具有抵抗此种药物的能力。例如细菌可能因抗生
  • 天花天花疫苗用以预防天花。古代民众预防天花的方法。其具体方法是把天花病患者身上的痘痂制浆(脓),以小刀拭在受种者的皮肤之下,使之产生免疫力,以预防天花。另一个方法,就是让受种者
  • 核酮糖核酮糖(英语:ribulose)按结构上分类属于戊糖与酮糖。其所对应的醛糖是核糖,核酮糖的衍生物核酮糖-5-磷酸以及核酮糖-1,5-二磷酸在植物光合作用的暗反应中占有重要地位。果聚糖:菊
  • 拉丁字母发展史拉丁字母大约在公元前7世纪出现,经历了大约2500年历史的转变,成为今时今日的样式,是现时世上应用最广泛的书写系统。一般相信拉丁字母源于希腊字母西部分支优卑亚字母。大约在
  • 大陆性气候大陆性气候是地球中纬度大陆腹地的一种气候类型,由于受海洋的影响较小,有年温差大、降水少的特点。除了北美东海岸地区的温带大陆性湿润气候以外,本气候的冬季通常有一个固定的
  • PTEN1D5R, 2KYL· phosphatidylinositol-3-phosphatase activity · phosphoprotein phosphatase activity · protein serine/threonine phosphatase activity · protein t
  • 方程数学中方程可以简单的理解为含有未知数的等式。例如以下的方程:其中的 x {\displaystyle x} 为未知数。如果把数学当作语言,那么
  • span class=nowrapTiOSOsub4/sub/span硫酸氧钛(Titanyl sulfate),别名硫酸钛酰,化学式TiOSO4。分子量159.94。相对密度约1.47。白色或微黄色潮解粉末,溶于水,在热水中易水解,生成水合二氧化钛。硫酸氧钛在溶液或晶体内
  • 神经束膜神经束膜为神经中保护性结缔组织的第二层,为一光滑透明的薄膜,将神经纤维分隔成束。神经束膜可轻易地与其包覆的神经纤维分离,以管状外鞘的形式独立出来。神经束膜外层为结缔组
  • 质量守恒质量守恒定律是自然界普遍存在的基本定律之一。此定律指出,对于任何物质和能量全部转移的系统来说,系统的质量必须随着时间的推移保持不变,因为系统质量不能改变,不能增加或消除