狄拉克方程式

✍ dations ◷ 2025-04-25 01:38:15 #狄拉克方程式
理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-½粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}带有自旋-½的自由粒子的狄拉克方程的形式如下:其中 m {displaystyle m,} 是自旋-½粒子的质量, x {displaystyle mathbf {x} } 与 t {displaystyle t} 分别是空间和时间的坐标。狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑无场势自由粒子的薛定谔方程:薛定谔方程采用的时间项为一阶导数,而空间项为二阶导数,因此不具有洛伦兹协变性。若要符合洛伦兹协变性,很自然地需建构一具有空间项一阶导数的哈密顿量。而动量算符恰好是空间一阶导数。将动量算符代入式子中,从而得到i ℏ ∂ ψ ( x , t ) ∂ t = [ ℏ c i ( α 1 ∂ ∂ x 1 + α 2 ∂ ∂ x 2 + α 3 ∂ ∂ x 3 ) + β m c 2 ] ψ ( x , t ) ≡ H ψ ( x , t ) {displaystyle ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}}=leftpsi (mathbf {x} ,t)equiv Hpsi (mathbf {x} ,t)}亦可以矢量符号写为:其中的系数 α i {displaystyle alpha _{i}} 和 β {displaystyle beta } 不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数 α i {displaystyle alpha _{i}} 是矩阵,那么波函数 ψ ( x , t ) {displaystyle psi (mathbf {x} ,t)} 也不能是简单的标量场,而只能是N×1阶列矢量狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值同时,这些旋量的每一个标量分量 ψ i ( x , t ) {displaystyle psi _{i}(mathbf {x} ,t)} 需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系:满足以上条件的系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。也可以用狭义相对论惯用四维矩阵来理解,如四动量。在不同基中这些系数矩阵有不同形式,最常见的形式为:这里 σ i {displaystyle sigma _{i}} 即为泡利矩阵:因此系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 可进一步写为:按照量子场论的自然单位制习惯,设 ℏ = c = 1 {displaystyle hbar =c=1} ,狄拉克方程可写为:定义四个反对易矩阵γμ,μ=0,1,2,3(称为狄拉克矩阵)。其反对易关系为:利用上式可证明因此狄拉克方程可写成:i ℏ γ μ ∂ μ ψ − m c ψ = 0 {displaystyle ihbar gamma ^{mu }partial _{mu }psi -mcpsi =0}采取自然单位制习惯 ℏ = c = 1 {displaystyle hbar =c=1} ,则可将狄拉克方程写成:与上面给出的 α, β相对应,可以选择:若采用费曼斜线标记,比如偏微分符号 ∂ / {displaystyle {partial !!!{big /}}} (英语念作d-slash);其将狄拉克矩阵与各分量做乘积求和的计算,合并为一标有斜线之符号:可使狄拉克方程变成:若同时采用费曼斜线符号及自然单位制.mw-parser-output .serif{font-family:Times,serif}ħ = c = 1,狄拉克方程可写成一极为简单的形式:( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}以狄拉克公式来解释能量阶,会发现每个电子能级会有相对的负能级,但是实验上普通电子无法带有负能量,因此狄拉克假设负能量阶已被无限的负能电子海占据,所以观测的电子无法进入负能级。这假说有许多疑点,尤其是无限的电子海其实有接受更多电子的能级,所以无法防止负能级电子的产生。

相关

  • 古马其顿古马其顿语(希腊语:Αρχαία μακεδονική γλώσσα)是古马其顿的语言,在公元前1000年的马其顿王国被使用,属于印欧语系。古马其顿语在公元前4世纪逐渐被希腊化
  • 肠腺利贝昆氏腺是位于十二指肠壁和空肠壁的一种外分泌腺,在不同的位置,其功能不尽相同。
  • 标准模型在粒子物理学里,标准模型(英语:Standard Model,SM)是描述强力、弱力及电磁力这三种基本力及组成所有物质基本粒子的理论,属于量子场论的范畴,并与量子力学及狭义相对论相容。到目前
  • 匚部,就汉字索引来说,是为部首之一,康熙字典214个部首中的第二十二个(两划的则为第十六个)。就中文而言,匚部归于两划部首。匚部通常是从上左下包围部分为部字,且无其他部首可用者
  • 铠甲动物门铠甲动物门(学名:Loricifera)是动物界的一门,其下的物种生活在海洋中,这个门在1983年被莱因霍尔德发现。在2017年发现了寒武纪中期的铠甲动物的化石。它们的近亲是动吻动物门和鳃
  • 梅肯-比伯比伯县(Bibb County, Georgia)是美国乔治亚州中部的一个县。面积693平方公里。根据美国2000年人口普查,共有人口153,887人。县治梅肯 (Macon)。成立于1822年12月9日。县名纪念
  • 马赫-曾德尔干涉仪马赫-曾德尔干涉仪(Mach-Zehnder interferometer)是一种干涉仪,可以用来观测从单独光源发射的光束分裂成两道准直光束(英语:collimated light)之后,经过不同路径与介质所产生的相对
  • 萨维尔·勒·皮雄格扎维埃·勒皮雄(法语:Xavier Le Pichon, 1937年6月18日-),法国地质学家。在他的众多贡献中,最富盛名的是1968年提出的板块构造论的综合模型。他是法兰西学院的教授。勒皮雄教授
  • 北莱茵-威斯特法伦北莱茵-威斯特法伦(德语:Nordrhein-Westfalen),位于德国西部,总人口超过1800万,是德国人口最多的联邦州。总面积34080平方公里,首府杜塞尔多夫。该州与比利时及荷兰接壤。莱茵-鲁尔
  • 碱基类似物碱基类似物(英语:Base analog)是具有取代核苷酸中核碱基功能的化学物质,是一类能够诱发点突变的试剂。例子有:5-溴尿嘧啶和2-氨基嘌呤。碱基类似物在进入细胞后通过补救途径转化