狄拉克方程式

✍ dations ◷ 2025-11-10 03:30:56 #狄拉克方程式
理论物理中,相对于薛定谔方程之于非相对论量子力学,狄拉克方程是相对论量子力学的一项描述自旋-½粒子的波函数方程,由英国物理学家保罗·狄拉克于1928年建立,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这条方程预言了反粒子的存在,随后1932年由卡尔·安德森发现了正电子(positron)而证实。( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}带有自旋-½的自由粒子的狄拉克方程的形式如下:其中 m {displaystyle m,} 是自旋-½粒子的质量, x {displaystyle mathbf {x} } 与 t {displaystyle t} 分别是空间和时间的坐标。狄拉克所希望建立的是一个同时具有洛伦兹协变性和薛定谔方程形式的波方程,并且这个方程需要确保所导出的概率密度为正值,而不是像克莱因-戈尔登方程那样存在缺乏物理意义的负值。考虑无场势自由粒子的薛定谔方程:薛定谔方程采用的时间项为一阶导数,而空间项为二阶导数,因此不具有洛伦兹协变性。若要符合洛伦兹协变性,很自然地需建构一具有空间项一阶导数的哈密顿量。而动量算符恰好是空间一阶导数。将动量算符代入式子中,从而得到i ℏ ∂ ψ ( x , t ) ∂ t = [ ℏ c i ( α 1 ∂ ∂ x 1 + α 2 ∂ ∂ x 2 + α 3 ∂ ∂ x 3 ) + β m c 2 ] ψ ( x , t ) ≡ H ψ ( x , t ) {displaystyle ihbar {frac {partial psi (mathbf {x} ,t)}{partial t}}=leftpsi (mathbf {x} ,t)equiv Hpsi (mathbf {x} ,t)}亦可以矢量符号写为:其中的系数 α i {displaystyle alpha _{i}} 和 β {displaystyle beta } 不能是简单的常数,否则即使对于简单的空间旋转变换,这个方程也不是洛伦兹协变的。因此狄拉克假设这些系数都是N×N阶矩阵以满足洛伦兹协变性。如果系数 α i {displaystyle alpha _{i}} 是矩阵,那么波函数 ψ ( x , t ) {displaystyle psi (mathbf {x} ,t)} 也不能是简单的标量场,而只能是N×1阶列矢量狄拉克把这些列矢量叫做旋量(Spinor),这些旋量所决定的概率密度总是正值同时,这些旋量的每一个标量分量 ψ i ( x , t ) {displaystyle psi _{i}(mathbf {x} ,t)} 需要满足标量场的克莱因-戈尔登方程。比较两者可以得出系数矩阵需要满足如下关系:满足以上条件的系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 本征值只可以取±1,并且要求是无迹的,即矩阵的对角线元素和为零。这样,矩阵的阶数N只能为偶数,即包含有相等数量的+1和-1。满足条件的最小偶数是4而不是2,原因是存在3个泡利矩阵。也可以用狭义相对论惯用四维矩阵来理解,如四动量。在不同基中这些系数矩阵有不同形式,最常见的形式为:这里 σ i {displaystyle sigma _{i}} 即为泡利矩阵:因此系数矩阵 α {displaystyle alpha } 和 β {displaystyle beta } 可进一步写为:按照量子场论的自然单位制习惯,设 ℏ = c = 1 {displaystyle hbar =c=1} ,狄拉克方程可写为:定义四个反对易矩阵γμ,μ=0,1,2,3(称为狄拉克矩阵)。其反对易关系为:利用上式可证明因此狄拉克方程可写成:i ℏ γ μ ∂ μ ψ − m c ψ = 0 {displaystyle ihbar gamma ^{mu }partial _{mu }psi -mcpsi =0}采取自然单位制习惯 ℏ = c = 1 {displaystyle hbar =c=1} ,则可将狄拉克方程写成:与上面给出的 α, β相对应,可以选择:若采用费曼斜线标记,比如偏微分符号 ∂ / {displaystyle {partial !!!{big /}}} (英语念作d-slash);其将狄拉克矩阵与各分量做乘积求和的计算,合并为一标有斜线之符号:可使狄拉克方程变成:若同时采用费曼斜线符号及自然单位制.mw-parser-output .serif{font-family:Times,serif}ħ = c = 1,狄拉克方程可写成一极为简单的形式:( i ∂ / − m ) ψ = 0 {displaystyle (i{partial !!!{big /}}-m)psi =0,}以狄拉克公式来解释能量阶,会发现每个电子能级会有相对的负能级,但是实验上普通电子无法带有负能量,因此狄拉克假设负能量阶已被无限的负能电子海占据,所以观测的电子无法进入负能级。这假说有许多疑点,尤其是无限的电子海其实有接受更多电子的能级,所以无法防止负能级电子的产生。

相关

  • 红十字国际红十字与红新月运动(法语:Le Mouvement Croix-Rouge et Croissant-Rouge;英语:International Red Cross and Red Crescent Movement;德语:Internationle Rotkreuz- und Rothal
  • 咯萘啶咯萘啶是一种抗疟疾药物。它于1970年首次制造,自20世纪80年代以来一直在中国临床使用。咯萘啶是苯并萘啶的衍生物,为中国研制的一种抗疟药。对红内期疟原虫有杀灭作用,对耐氯喹
  • 皮卡第语皮卡第语(法语:Picard),又译作庇卡底语,是一种接近法语的语言,属于罗曼语族。两个法国北部的地区使用皮卡第语,分别是北部-加来海峡与皮卡第大区。
  • 实数N ⊆ Z ⊆ Q ⊆ R ⊆
  • 美利坚邦联美利坚联盟国(英语:the Confederate States of America,CSA),或称美利坚诸州同盟、美利坚邦联或迪克西(通俗说法),是自1861年至1865年由11个美国南方蓄奴州宣布从美利坚合众国分裂而
  • 侯赛因·本·塔拉勒侯赛因·宾·塔拉勒(阿拉伯语:حسين بن طلال,Ḥusayn bin Ṭalāl;Hussein bin Talal,1935年11月14日-1999年2月7日),又称侯赛因一世(King Hussein I),为约旦国王,在位期间自19
  • 皇家安大略博物馆皇家安大略博物馆(英语:Royal Ontario Museum 法语:Musée royal de l'Ontario,简称ROM),位于加拿大安大略省多伦多市中心,是北美洲第5大博物馆和加拿大最大的世界文化和自然历史博
  • 统计推断推断统计学(或称统计推断,英语:statistical inference),指统计学中,研究如何根据样本数据去推断总体数量特征的方法。它是在对样本数据进行描述的基础上,对统计总体的未知数量特征
  • 分灵传统宗教仪式:神明秘密社会:分灵,又称分香、分火。在东亚传统宗教中,指在某座寺庙求取神佛的香火,回去供奉的行为。而台湾民间信仰,分灵的神像每逢一段时间,就需要回到原宇(俗谓祖庙
  • 螺旋模型螺旋模型(Spiral model)是一种演化软件开发过程模型,它兼顾了快速原型的迭代的特征以及瀑布模型的系统化与严格监控。螺旋模型最大的特点在于引入了其他模型不具备的风险分析,使