超高能宇宙射线

✍ dations ◷ 2025-11-29 13:14:43 #天文学中未解决的问题,宇宙线,粒子物理学,亚原子粒子

在粒子天文物理中,超高能宇宙射线(英语:ultra-high-energy cosmic ray,UHECR)是指能量高于1 EeV(1018电子伏特,相当约0.16焦耳)的宇宙射线,其能量远高于其他典型宇宙射线的静质量与能量。

极高能宇宙射线(英语:extreme-energy cosmic ray,EECR)是能量超过5×1019 eV(相当约8焦耳)的UHECR。5×1019 eV这个值即所谓GZK极限,指的是长距离行进(约1.6亿光年)的宇宙射线质子会因为宇宙微波背景(CMB)中光子的散射,导致能量有上限。因此,EECR不可能自早期宇宙就存在至今,而是宇宙学上较“年轻”的宇宙射线,而且因某种未知的物理过程而从本超星系团的某个位置发射出来。如果EECR不是质子,而是核子数为 A {\displaystyle A} 的原子核,那么GZK极限也适用该核子数,只是原子核的总能量限制前带有 1 / A {\displaystyle 1/A} 的分数。对于铁原子核,相应的极限会是7002448609416360000♠2.8×1021 eV 。但是,核物理过程导致铁原子核的极限与质子相近。其他高丰度的原子核其极限甚至更低。

这些粒子非常稀有;在2004年至2007年之间, 皮埃尔・奥格天文台 (PAO)初始运行时检测到27起事件,估计它们抵达天文台时能量超过 7000913240597589999♠5.7×1019 eV ,也就是说,该天文台所调查的 3000 km2 面积之中大约每四周就发生一次这样的事件。

有证据显示,这些最高能量的宇宙射线可能是铁原子核 ,而不是构成大多数宇宙射线的质子。

人们推定EECR的(假说性的)发射源称为捷伐加速器(Zevatron),其命名就如同劳伦斯・柏克莱国家实验室的贝伐加速器(Bevatron),以及费米实验室的兆电子伏特加速器(Tevatron)一样,所以能够将粒子加速到1 ZeV(1021 eV,皆电子伏特)。基于星系喷流内部的冲击波可引起粒子的扩散加速,星系喷流在2004年一度被考虑可能就是Zevatron。特别是,模型表明,附近M87星系喷流冲击波可能将铁原子核加速到ZeV范围。 2007年,皮埃尔・奥格天文台观测到EECR与附近星系中心的河外超大质量黑洞(叫做活跃星系核)具有关联性。 然而,随着持续的观察,两者关联性的强度变得越来越弱。虽然最新的结果显示这些EECR中似乎只有不到40%来自AGN,其相关性比以前报道的要弱得多,但活跃星系核磁层中加速度的离心机制也可以解释极高的能量 。 格里布(Grib)和帕夫洛夫(Pavlov)(2007,2008)的提出一个更具推测性的建议,是设想超重暗物质通过潘罗斯过程的衰变 。

1962年,约翰・D・林斯利(John D Linsley)博士和利维奥・斯卡西(Livio Scarsi)博士在新墨西哥州的火山牧场实验中首次观察到能量超过7001160217648700000♠1.0×1020 eV(16 J)的宇宙射线粒子。

从那之后,人们就观测到具有更高能量的宇宙射线粒子。 其中包括1991年10月15日晚上,在犹他州Dugway试验场上 ,由犹他大学的“苍蝇眼”(Fly's eye)实验观察到的Oh-My-God粒子 。该次观测结果震惊了天文物理学家 ,他们估算其能量约无7001512696475840000♠3.2×1020 eV(50 J) ——换句话说, 原子核的动能相当于以时速100公里(时速60英里)飞行的棒球(142克或5盎司)。

UHECR与蓝移的宇宙微波背景辐射会发生相互作用,这限制了UHECR在失去能量之前可以行进的距离;这就是Greisen–Zatsepin–Kuzmin极限(GZK极限)。

UHECR的其他可能来源是:

根据推测,活跃星系核能将暗物质转化为高能质子。 圣彼得堡亚历山大・弗里德曼理论物理实验室的尤里・帕夫洛夫(Yuri Pavlov)和安德烈・格里布(Andrey Grib)推测,暗物质粒子的质量约为质子=的15倍,而且它们可以分解为成对、与普通物质相互作用的较重虚粒子。 如潘罗斯过程所描述的,这些粒子之一可能靠近活跃星系核,而另一个则逃逸。 那些粒子当中有会与入射的粒子碰撞;根据帕夫洛夫的说法,这是能量非常高的碰撞,可以形成具有高能量的一般可见的质子。 帕夫洛夫又宣称,这种过程的证据就是超高能宇宙射线粒子。 超高能宇宙射线粒子也可能是由超重暗物质“X粒子”(例如黑洞子)的衰变而产生的。 这种能量甚高的衰变产物携带着X粒子质量的一部分,被认为合理解释了我们观察到的超高能宇宙射线。

相关

  • 尼美舒利尼美舒利是一种人工合成的COX-2特异性抑制剂,为非类固醇消炎止痛药,具有镇痛和退热的作用。尼美舒利被用于治疗12岁以上成人的疼痛、退化性关节炎和痛经等。因为有出现肝中毒
  • 俄罗斯联邦航天局name = 'Aero', description = '航空太空科技(航空航天科技)', content = {{ type = 'text', text = [=[本页面没有类似于NoteTA的数量限制。 请自行修改分类名。在NoteTA样板
  • 急性白磷中毒急性白磷中毒,又称急性黄磷中毒,是指人体由于摄入(吸入或口服)白磷单质(不包括磷化合物)而出现的急性中毒医学情况。急性白磷中毒的原因包括误服含白磷产品、自杀或自残、军事应用
  • 让-皮埃尔·里奥让-皮埃尔·里奥(法语:Jean-Pierre Léaud;1944年5月28日-),法国电影演员,以演出安端·达诺(法语:Antoine Doinel)这个角色的五部弗朗索瓦·特吕弗执导的电影闻名,《四百击》(1959)为这
  • 公共卫生学公共卫生是通过组织社区资源,为公众提供疾病预防和健康促进的一门管理学,它使用预防医学、健康促进、环境卫生、社会科学等技术和手段。公共卫生体系由国际公共卫生组织、国家
  • 内呼吸呼吸可能是指:
  • 混溶混溶(有时又称作无限互溶)是溶质与溶剂以任意的比例混合皆可均匀溶解的现象。基本上这个词可以用在任何的相(液体、固体及气体),但用在液体上较为普遍。常见的例子有酒精与水;油
  • 公秉千升,是容量计量单位,符号为kL。同时也是国际单位制(SI)单位。立方尧米、立方佑米(Ym3) 立方泽米、立方皆米(Zm3) 立方艾米(Em3) 立方拍米(Pm3) 立方垓米、立方太米(Tm3)立方京米、立
  • 浊软颚塞音浊软颚塞音是辅音的一种,用于一些口语中。浊软颚塞音在国际音标的符号是⟨ɡ⟩,X-SAMPA音标的符号则是⟨g⟩。严格来说,国际音标里表示此音的符号是尾巴打开的)有人认为这是因为
  • 捕手捕手(Catcher,通常简写成C)是棒球或垒球比赛中负责接住投手投球及接捕本垒附近的击球,有所谓“场上的教练”之称。捕手的工作要指导投手配球与指挥场内守备球员的位置,预防进攻者