首页 >
形式语言
✍ dations ◷ 2025-12-07 09:11:55 #形式语言
在数学、逻辑和计算机科学中,形式语言(英语:Formal language)是用精确的数学或机器可处理的公式定义的语言。如语言学中语言一样,形式语言一般有两个方面:语法和语义。专门研究语言的语法的数学和计算机科学分支叫做形式语言理论,它只研究语言的语法而不致力于它的语义。在形式语言理论中,形式语言是一个字母表上的某些有限长字符串的集合。一个形式语言可以包含无限多个字符串。语言定义在某一个特定的字母表上,字母表(经常记作 Σ )可以为任意有限集合。例如集合
{
a
,
b
,
c
.
.
.
,
z
}
{displaystyle {a,b,c...,z}}
就表示所有小写字母构成的字母表。字符串是字母表中的元素构成的有穷序列,以之前定义的小写字母表为例,“hello”,“wikipedia”,“abcjkg”都是上面的串,而“AbCd”就不是上面的串了。记号 ε 表示空串——它是一个特殊的长度为0的串。直觉上,一个语言是字母表所能构成的所有串的集合的一个子集,具体来说:对于任意一个字母表,记全体长度为 n 的子串为
Σ
n
{displaystyle Sigma ^{n}}
,特别的,规定
Σ
0
{displaystyle Sigma ^{0}}
为{ε},则还可以定义Σ
∗
=
Σ
0
∪
Σ
1
∪
⋯
∪
Σ
n
∪
⋯
{displaystyle Sigma ^{*}=Sigma ^{0}cup Sigma ^{1}cup cdots cup Sigma ^{n}cup cdots }Σ
∗
{displaystyle Sigma ^{*}}
包含了字母表
Σ
{displaystyle Sigma }
所能构成的所有字符串。语言(一般记为 L )定义为
Σ
∗
{displaystyle Sigma ^{*}}
的任意子集。下面给出一些语言的例子,
{
h
e
l
l
o
,
w
o
r
l
d
}
{displaystyle {hello,world}}
是一个包含两个字符串的集合,也可以被视为小写字母构成的字母表上的一个语言。而实际上研究的语言的例子则常常更为复杂,例如所有合法的C语言程序串构成的集合也可以视作ASCII上的一个语言(假定编译器只支持英文符号)。需要注意的一点是,
Σ
∗
{displaystyle Sigma ^{*}}
的空子集 ∅ 与只包含空串的语言 {ε} 是两个不同的语言。语言间的运算就是 Σ*幂集上的运算。不像自然语言,一个形式语言作为一个集合,需要有某种明确的标准来定义一个字符串是否是它的元素。这可以通过多种方法来完成,下面将给出一些例子:如果一个形式语言的元素数目是有限的,那么可以通过枚举它的各个字符串来严格地定义它。通过形式文法来产生(参见乔姆斯基谱系)。正则表达式是一种很多编程语言和库都支持的语法,这种语法可以用于匹配符合一定条件的字符串,经常用于文本的搜索和过滤。从名称上来说,正则表达式应当是对应于正则语言的,在形式语言领域内所称的正则表达式确实如此。不过,在实际的编程语言中,很多正则表达式已经通过引入复杂的扩展,可以匹配正则表达式所不能描述的内容。形式语言中的正则表达式和一般编程语言中所称的正则表达式在语法上也有较大差异。直觉上来说,自动机消耗输入符号,并在自身的不同状态间转移,可以通过状态机消耗完整个字符串之后是否达到某些特定状态来定义一个字符串是否属于某一个语言。语言可以通过某种自动机来识别,比如图灵机、有限状态自动机。
相关
- 光合作用光合作用是植物、藻类等生产者和某些细菌,利用光能把二氧化碳、水或硫化氢变成碳水化合物的过程。可分为产氧光合作用和不产氧光合作用。植物之所以称为食物链的生产者,是因为
- 拟病毒拟病毒(Virusoid)也称为类病毒,它是一种环状单链RNA。它的侵染对象是植物病毒。被侵染的植物病毒被称为辅助病毒,拟病毒必须通过辅助病毒才能复制。单独的辅助病毒或拟病毒都不
- 合成药物列表合成药物列表
- 水解水解是一种化工单元过程,是物质与水反应,利用水形成新的物质的过程。通常是指盐类的水解平衡。无机物在水中分解通常是双分解过程,属于复分解反应。水分子也被分解成氢离子和氢
- 变种在植物分类学中,变种(拉丁文:varietas,简称写做 var.)为一种分类级别,位于种与亚种之下、变型(英语:Form (botany))之上;作为种下分类群,生物学名会采用三名法。有一种枕形仙人掌“Esco
- 苯芴醇苯芴醇(Lumefantrine或benflumetol)是一种抗疟药,只会和蒿甲醚合并使用,称为复方蒿甲醚-苯芴醇(英语:Artemether/lumefantrine),有时也会用英文co-artemether表示。在1981年的青蒿素
- 将军 (古希腊)将军(strategoi)是古希腊统领军队的高级武官,这个称呼一直延续到东罗马帝国。直至今日,这个军衔也保留在希腊军队中,地位等同上将。另外,也是古希腊雅典城邦的民主政制中军事最高
- 马赛1法国统计部门在计算土地面积时,不计算面积大于1平方公里的湖泊、池塘、冰川和河口。马赛(普罗旺斯语:Marselha 或;法语:Marseille,马赛口音: ,巴黎口音)是法国第二大城市和第三大都
- 夜盲症夜盲症(英语:Nyctalopia或Night Blindness),俗称雀盲眼,表现为在黑暗中或光线较弱的地方看不清东西。由于先天遗传因素,视网膜色素变性或者杆状细胞发育不良等造成。目前没有有效
- 疏松结缔组织蜂窝组织(Areola tissue),或称为疏松结缔组织(loose connective tissue),是人体内最常见的一种结缔组织。疏松结缔组织主要由大量的细胞外基质(主要由成纤维细胞分泌的纤维组成)和少
