首页 >
推迟势
✍ dations ◷ 2025-09-19 00:39:54 #推迟势
在电磁学里,推迟势指的是,响应含时电荷分布或含时电流分布,而产生的推迟标势或推迟矢势。对于这程序,由于“前因”与“后果”之间必然的推迟关系,讯号以光速从源位置传播到场位置,需要有限时间。在某源位置的电流或电荷分布,必须经过一段时间之后,才能够将其影响传播到场位置,产生对应的电磁作用。这一段时间的长久跟源位置与场位置之间距离的远近有关。对于静态的电荷分布和电流分布,电势
Φ
(
r
)
{displaystyle Phi (mathbf {r} )}
和磁矢势
A
(
r
)
{displaystyle mathbf {A} (mathbf {r} )}
分别定义为其中,
r
{displaystyle mathbf {r} }
是场位置,
r
′
{displaystyle mathbf {r} '}
是源位置,
ϵ
0
{displaystyle epsilon _{0}}
是真空电容率,
μ
0
{displaystyle mu _{0}}
是真空磁导率,
ρ
{displaystyle rho }
是电荷密度,
J
{displaystyle mathbf {J} }
是电流密度,
V
′
{displaystyle mathbb {V} '}
是体积分的空间,
d
3
r
′
{displaystyle d^{3}mathbf {r} '}
是微小体元素。在电动力学里,这两个方程必须加以延伸,才能正确地响应含时电流分布或含时电荷分布。定义推迟时间
t
r
{displaystyle t_{r}}
为检验时间
t
{displaystyle t}
减去电磁波传播的时间:其中,
c
{displaystyle c}
是光速。假设,从源位置
r
′
{displaystyle mathbf {r} '}
往场位置
r
{displaystyle mathbf {r} }
发射出一束电磁波,而这束电磁波在检验时间
t
{displaystyle t}
抵达观测者的场位置
r
{displaystyle mathbf {r} }
,则这束电磁波发射的时间是推迟时间
t
r
{displaystyle t_{r}}
。由于电磁波传播于真空的速度是有限的,观测者检验到电磁波的检验时间
t
{displaystyle t}
,会不同于这电磁波发射的推迟时间
t
r
{displaystyle t_{r}}
。推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
与推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
分别用方程定义为请注意,在这两个含时方程内,源电荷密度和源电流密度都跟推迟时间
t
r
{displaystyle t_{r}}
有关,而不是与时间无关。这两个含时方程,是用推理得到的启发式,而不是用任何定律或公理推导出来的。讯号以光速传播,从源位置到场位置,需要有限时间。所以在时间
t
{displaystyle t}
的推迟势必定是由在推迟时间
t
r
{displaystyle t_{r}}
的源电荷密度或源电流密度产生的。为了要确定这两个方程的正确性与合理性,必须证明它们满足非齐次的电磁波方程。还有,洛伦茨规范是一个常用的规范,可以较便利地解析电磁辐射的生成问题。稍后会有表示两个方程满足洛伦茨规范条件的证明。含时电荷分布或含时电流分布所产生的电势或磁矢势,必须遵守达朗贝尔方程,表达为:1假若,这些用启发法推理得到的推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
和推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
不能满足非齐次的电磁波方程,那么,这些推迟势很可能有重大错误,无法适用于期望的用途(从含时源生成电磁辐射)。设定
R
{displaystyle {boldsymbol {mathfrak {R}}}}
为从源位置到场位置的分离矢量:场位置
r
{displaystyle mathbf {r} }
、源位置
r
′
{displaystyle mathbf {r} '}
和时间
t
{displaystyle t}
都是自变数(independent variable)。分离矢量
R
{displaystyle {boldsymbol {mathfrak {R}}}}
和其大小
R
{displaystyle {mathfrak {R}}}
都是应变数(dependent variable),跟场位置
r
{displaystyle mathbf {r} }
、源位置
r
′
{displaystyle mathbf {r} '}
有关。推迟时间
t
r
=
t
−
R
/
c
{displaystyle t_{r}=t-{mathfrak {R}}/c}
也是应变数,跟时间
t
{displaystyle t}
、分离距离
R
{displaystyle {mathfrak {R}}}
有关。推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
的梯度是源电荷密度
ρ
(
r
′
,
t
r
)
{displaystyle rho (mathbf {r} ',,t_{r})}
的全微分是注意到所以,源电荷密度
ρ
(
r
′
,
t
r
)
{displaystyle rho (mathbf {r} ',,t_{r})}
的梯度是其中,
ρ
˙
(
r
′
,
t
r
)
{displaystyle {dot {rho }}(mathbf {r} ',,t_{r})}
定义为
∂
ρ
(
r
′
,
t
)
∂
t
r
{displaystyle {frac {partial rho (mathbf {r} ',,t)}{partial t_{r}}}}
。将这公式代入,推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
的梯度是推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
的拉普拉斯算符是其中,
δ
3
(
R
)
{displaystyle delta ^{3}({boldsymbol {mathfrak {R}}})}
是三维狄拉克δ函数。所以,推迟标势满足非齐次的电磁波方程类似地,可以证明推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
满足非齐次的电磁波方程。给予磁场
B
{displaystyle mathbf {B} }
,并不是只有一个矢量场
A
{displaystyle mathbf {A} }
满足条件
B
=
∇
×
A
{displaystyle mathbf {B} =nabla times mathbf {A} }
。实际上,有无限多个解答。应用一项矢量恒等式,
∇
×
(
∇
λ
)
=
0
{displaystyle nabla times (nabla lambda )=0}
,给予任意函数
λ
{displaystyle lambda }
,那么,
A
=
A
+
∇
λ
{displaystyle mathbb {A} =mathbf {A} +nabla lambda }
也是一个解答。磁矢势的这种特性,称为规范自由。物理学家时常会选择使用某种规范来解析特定的问题。在电磁学里,洛伦茨规范是一个常用的规范,可以便利地解析电磁辐射的生成问题。洛伦茨规范用微分方程表达为按照前述方法,可以证明推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
和推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
满足洛伦茨规范。这是一个很好的练习。推迟势与电场
E
{displaystyle mathbf {E} }
、磁场
B
{displaystyle mathbf {B} }
的关系分别为按照前述方法,可以得到电场
E
{displaystyle mathbf {E} }
和磁场
B
{displaystyle mathbf {B} }
的方程,又称为杰斐缅柯方程:定义超前时间
t
a
{displaystyle t_{a}}
为现在时间
t
{displaystyle t}
加上光波传播的时间:超前标势
Φ
a
(
r
,
t
)
{displaystyle Phi _{a}(mathbf {r} ,,t)}
与超前矢势
A
a
(
r
,
t
)
{displaystyle mathbf {A} _{a}(mathbf {r} ,,t)}
分别用方程表达为这两个方程表明,在时间
t
{displaystyle t}
的超前标势与超前矢势,乃是由在超前时间
t
a
{displaystyle t_{a}}
的源电荷密度或源电流密度产生的。超前标势
Φ
a
(
r
,
t
)
{displaystyle Phi _{a}(mathbf {r} ,,t)}
与超前矢势
A
a
(
r
,
t
)
{displaystyle mathbf {A} _{a}(mathbf {r} ,,t)}
也满足非齐次的电磁波方程和洛伦茨规范,但它们违反了因果律。这是很严峻的问题,未来发生的事件不应该影响过去发生的事件。在物理学里,超前标势和超前矢势只是很有意思的纯理论问题,并没有任何实际用途。
相关
- 基因污染基因污染(英语:Genetic pollution)指对原生物种基因库非预期或不受控制的基因流动。长期以来,保护生物学以及自然保护提倡者用基因污染这一术语来形容从家养的、野生的、非本土
- 花被片花被片(Tepal)是花被的一部分,包括花瓣和萼片。花被片一词常用于当花被的形状和颜色相似时。未分化的花被片被认为是被子植物的一种原始状态。花瓣和萼片的分化可能是受到了动
- RAI意大利广播电视公司(意大利语:Rai - Radiotelevisione Italiana),简称RAI,是意大利的公共广播机构,隶属于经济财政部之下。开设有许多电视台和广播电台,是欧洲广播联盟的23个成员之
- 始祖鸟始祖鸟属(学名:Archaeopteryx)是始祖鸟科的一个属,是介于有羽毛恐龙和鸟类之间的过渡物种。始祖鸟曾经长期被认为是最早及最原始的鸟类,属的学名即来自古希腊文的ἀρχαῖος(
- 谷氨酸脱羧酶谷氨酸脱羧酶(英语:Glutamate decarboxylase;GAD)是一个催化谷氨酸脱羧为γ-氨基丁酸并释放CO2的酶。此酶使用磷酸吡哆醛作为一个辅因子。此反应以如下方式进行:此酶在哺乳动物中
- 梦遗遗精或梦遗是指在睡眠中自发的性高潮其中包括男性射精、女性阴道湿润或不高潮(或两者皆有),男性遗精亦有可能在一天中任何时间发生。在青春期和青壮年中最常见,但它可能发生在青
- 谱线谱线是在均匀且连续的光谱上明亮或黑暗的线条,起因于光子在一个狭窄的频率范围内比附近的其他频率超过或缺乏。谱线通常是量子系统(通常是原子,但有时会是分子或原子核)和单一光
- 政府停摆在美国政治中,政府停摆或称政府关闭(英语:government shutdown)指的是在国会无法通过足够的预算案的情况下,美国政府关闭一些政府机构,暂时停止提供“非必要服务”,相关的政府雇员
- 帕罗奥多研究中心帕罗奥多研究中心公司(英语:Palo Alto Research Center, Inc.,缩写为PARC),前身为施乐帕罗奥多研究中心(Xerox PARC),曾是施乐公司所成立的最重要的研究机构,它坐落于美国加利福尼亚
- 雅卢在古老埃及神话之中的雅卢(Aaru,埃及语: