推迟势

✍ dations ◷ 2025-06-08 01:12:08 #推迟势
在电磁学里,推迟势指的是,响应含时电荷分布或含时电流分布,而产生的推迟标势或推迟矢势。对于这程序,由于“前因”与“后果”之间必然的推迟关系,讯号以光速从源位置传播到场位置,需要有限时间。在某源位置的电流或电荷分布,必须经过一段时间之后,才能够将其影响传播到场位置,产生对应的电磁作用。这一段时间的长久跟源位置与场位置之间距离的远近有关。对于静态的电荷分布和电流分布,电势 Φ ( r ) {displaystyle Phi (mathbf {r} )} 和磁矢势 A ( r ) {displaystyle mathbf {A} (mathbf {r} )} 分别定义为其中, r {displaystyle mathbf {r} } 是场位置, r ′ {displaystyle mathbf {r} '} 是源位置, ϵ 0 {displaystyle epsilon _{0}} 是真空电容率, μ 0 {displaystyle mu _{0}} 是真空磁导率, ρ {displaystyle rho } 是电荷密度, J {displaystyle mathbf {J} } 是电流密度, V ′ {displaystyle mathbb {V} '} 是体积分的空间, d 3 r ′ {displaystyle d^{3}mathbf {r} '} 是微小体元素。在电动力学里,这两个方程必须加以延伸,才能正确地响应含时电流分布或含时电荷分布。定义推迟时间 t r {displaystyle t_{r}} 为检验时间 t {displaystyle t} 减去电磁波传播的时间:其中, c {displaystyle c} 是光速。假设,从源位置 r ′ {displaystyle mathbf {r} '} 往场位置 r {displaystyle mathbf {r} } 发射出一束电磁波,而这束电磁波在检验时间 t {displaystyle t} 抵达观测者的场位置 r {displaystyle mathbf {r} } ,则这束电磁波发射的时间是推迟时间 t r {displaystyle t_{r}} 。由于电磁波传播于真空的速度是有限的,观测者检验到电磁波的检验时间 t {displaystyle t} ,会不同于这电磁波发射的推迟时间 t r {displaystyle t_{r}} 。推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 与推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 分别用方程定义为请注意,在这两个含时方程内,源电荷密度和源电流密度都跟推迟时间 t r {displaystyle t_{r}} 有关,而不是与时间无关。这两个含时方程,是用推理得到的启发式,而不是用任何定律或公理推导出来的。讯号以光速传播,从源位置到场位置,需要有限时间。所以在时间 t {displaystyle t} 的推迟势必定是由在推迟时间 t r {displaystyle t_{r}} 的源电荷密度或源电流密度产生的。为了要确定这两个方程的正确性与合理性,必须证明它们满足非齐次的电磁波方程。还有,洛伦茨规范是一个常用的规范,可以较便利地解析电磁辐射的生成问题。稍后会有表示两个方程满足洛伦茨规范条件的证明。含时电荷分布或含时电流分布所产生的电势或磁矢势,必须遵守达朗贝尔方程,表达为:1假若,这些用启发法推理得到的推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 和推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 不能满足非齐次的电磁波方程,那么,这些推迟势很可能有重大错误,无法适用于期望的用途(从含时源生成电磁辐射)。设定 R {displaystyle {boldsymbol {mathfrak {R}}}} 为从源位置到场位置的分离矢量:场位置 r {displaystyle mathbf {r} } 、源位置 r ′ {displaystyle mathbf {r} '} 和时间 t {displaystyle t} 都是自变数(independent variable)。分离矢量 R {displaystyle {boldsymbol {mathfrak {R}}}} 和其大小 R {displaystyle {mathfrak {R}}} 都是应变数(dependent variable),跟场位置 r {displaystyle mathbf {r} } 、源位置 r ′ {displaystyle mathbf {r} '} 有关。推迟时间 t r = t − R / c {displaystyle t_{r}=t-{mathfrak {R}}/c} 也是应变数,跟时间 t {displaystyle t} 、分离距离 R {displaystyle {mathfrak {R}}} 有关。推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的梯度是源电荷密度 ρ ( r ′ , t r ) {displaystyle rho (mathbf {r} ',,t_{r})} 的全微分是注意到所以,源电荷密度 ρ ( r ′ , t r ) {displaystyle rho (mathbf {r} ',,t_{r})} 的梯度是其中, ρ ˙ ( r ′ , t r ) {displaystyle {dot {rho }}(mathbf {r} ',,t_{r})} 定义为 ∂ ρ ( r ′ , t ) ∂ t r {displaystyle {frac {partial rho (mathbf {r} ',,t)}{partial t_{r}}}} 。将这公式代入,推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的梯度是推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的拉普拉斯算符是其中, δ 3 ( R ) {displaystyle delta ^{3}({boldsymbol {mathfrak {R}}})} 是三维狄拉克δ函数。所以,推迟标势满足非齐次的电磁波方程类似地,可以证明推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 满足非齐次的电磁波方程。给予磁场 B {displaystyle mathbf {B} } ,并不是只有一个矢量场 A {displaystyle mathbf {A} } 满足条件 B = ∇ × A {displaystyle mathbf {B} =nabla times mathbf {A} } 。实际上,有无限多个解答。应用一项矢量恒等式, ∇ × ( ∇ λ ) = 0 {displaystyle nabla times (nabla lambda )=0} ,给予任意函数 λ {displaystyle lambda } ,那么, A = A + ∇ λ {displaystyle mathbb {A} =mathbf {A} +nabla lambda } 也是一个解答。磁矢势的这种特性,称为规范自由。物理学家时常会选择使用某种规范来解析特定的问题。在电磁学里,洛伦茨规范是一个常用的规范,可以便利地解析电磁辐射的生成问题。洛伦茨规范用微分方程表达为按照前述方法,可以证明推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 和推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 满足洛伦茨规范。这是一个很好的练习。推迟势与电场 E {displaystyle mathbf {E} } 、磁场 B {displaystyle mathbf {B} } 的关系分别为按照前述方法,可以得到电场 E {displaystyle mathbf {E} } 和磁场 B {displaystyle mathbf {B} } 的方程,又称为杰斐缅柯方程:定义超前时间 t a {displaystyle t_{a}} 为现在时间 t {displaystyle t} 加上光波传播的时间:超前标势 Φ a ( r , t ) {displaystyle Phi _{a}(mathbf {r} ,,t)} 与超前矢势 A a ( r , t ) {displaystyle mathbf {A} _{a}(mathbf {r} ,,t)} 分别用方程表达为这两个方程表明,在时间 t {displaystyle t} 的超前标势与超前矢势,乃是由在超前时间 t a {displaystyle t_{a}} 的源电荷密度或源电流密度产生的。超前标势 Φ a ( r , t ) {displaystyle Phi _{a}(mathbf {r} ,,t)} 与超前矢势 A a ( r , t ) {displaystyle mathbf {A} _{a}(mathbf {r} ,,t)} 也满足非齐次的电磁波方程和洛伦茨规范,但它们违反了因果律。这是很严峻的问题,未来发生的事件不应该影响过去发生的事件。在物理学里,超前标势和超前矢势只是很有意思的纯理论问题,并没有任何实际用途。

相关

  • 经济史经济史,经济领域的发展历史,是社会科学的核心,经济状态的变迁史,其研究范围为亚当·斯密的《国民财富的性质和原因的研究》。 经济史在19世纪从历史学分离开来成为一门独立学科,
  • 市长市长(英语对应词:Mayor,出自拉丁文“māior”,“较大的”的意思)是近现代城市或市镇中最高行政首长的职称。在许多政府系统里,市长是由市民选出为一个城市最高行政长官、或为一个
  • 麻黄麻黄为汉药,或中药中所称“发散风寒药”;古时别名龙沙、卑相、大麻。包括有三种麻黄属的植物:草麻黄(Ephedra sinica)、木贼麻黄(Ephedra equisetina)与中麻黄(Ephedra intermedia),采
  • 新约新约(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey Ash
  • 直译直译(英语:literal translation,direct translation,word-for-word translation)即逐词翻译,是一种与意译(翻译句子或词组意义上的)相对的翻译方式。Literal translation的另一个术
  • 标准误标准误差(英文:Standard Error),也称标准误,即样本平均数抽样分布(英语:Sampling distribution)的标准差(英文:Standard Deviation),是描述对应的样本平均数抽样分布的离散程度及衡量对
  • 兴奋-收缩耦联兴奋-收缩耦联(英语:excitation-contraction (EC) coupling)是一个于1952年创造出来的术语,用于表述肌肉将电刺激转变为机械反应的生理学过程。这一过程是肌肉生理学的基本法则,
  • 阿尔及利亚华人,是阿尔及利亚人口一部分,约有40000人。他们因商贸和支援基建项目等原因来到阿尔及利亚。但华商与当地人关系紧张,因此在2009年8月在首都阿尔及尔市郊爆发冲突。引发了100
  • 消防水龙消防水龙,或称消防水带。是用来运送高压水或泡沫等阻燃液体的软管。传统的消防水带以橡胶为内衬,外表面包裹着亚麻编织物。先进的消防水带则用聚氨酯等聚合材料制成。消防水带
  • 同类相食动物学中,同类相食是指以同类作为食物的行为。在动物界中,这是常见的生态互动,记录中有逾1500物种有此行为。同类相食在海洋世界中较为常见,通常陆地上的高级物种较少发生此现象