首页 >
推迟势
✍ dations ◷ 2025-02-23 14:16:24 #推迟势
在电磁学里,推迟势指的是,响应含时电荷分布或含时电流分布,而产生的推迟标势或推迟矢势。对于这程序,由于“前因”与“后果”之间必然的推迟关系,讯号以光速从源位置传播到场位置,需要有限时间。在某源位置的电流或电荷分布,必须经过一段时间之后,才能够将其影响传播到场位置,产生对应的电磁作用。这一段时间的长久跟源位置与场位置之间距离的远近有关。对于静态的电荷分布和电流分布,电势
Φ
(
r
)
{displaystyle Phi (mathbf {r} )}
和磁矢势
A
(
r
)
{displaystyle mathbf {A} (mathbf {r} )}
分别定义为其中,
r
{displaystyle mathbf {r} }
是场位置,
r
′
{displaystyle mathbf {r} '}
是源位置,
ϵ
0
{displaystyle epsilon _{0}}
是真空电容率,
μ
0
{displaystyle mu _{0}}
是真空磁导率,
ρ
{displaystyle rho }
是电荷密度,
J
{displaystyle mathbf {J} }
是电流密度,
V
′
{displaystyle mathbb {V} '}
是体积分的空间,
d
3
r
′
{displaystyle d^{3}mathbf {r} '}
是微小体元素。在电动力学里,这两个方程必须加以延伸,才能正确地响应含时电流分布或含时电荷分布。定义推迟时间
t
r
{displaystyle t_{r}}
为检验时间
t
{displaystyle t}
减去电磁波传播的时间:其中,
c
{displaystyle c}
是光速。假设,从源位置
r
′
{displaystyle mathbf {r} '}
往场位置
r
{displaystyle mathbf {r} }
发射出一束电磁波,而这束电磁波在检验时间
t
{displaystyle t}
抵达观测者的场位置
r
{displaystyle mathbf {r} }
,则这束电磁波发射的时间是推迟时间
t
r
{displaystyle t_{r}}
。由于电磁波传播于真空的速度是有限的,观测者检验到电磁波的检验时间
t
{displaystyle t}
,会不同于这电磁波发射的推迟时间
t
r
{displaystyle t_{r}}
。推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
与推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
分别用方程定义为请注意,在这两个含时方程内,源电荷密度和源电流密度都跟推迟时间
t
r
{displaystyle t_{r}}
有关,而不是与时间无关。这两个含时方程,是用推理得到的启发式,而不是用任何定律或公理推导出来的。讯号以光速传播,从源位置到场位置,需要有限时间。所以在时间
t
{displaystyle t}
的推迟势必定是由在推迟时间
t
r
{displaystyle t_{r}}
的源电荷密度或源电流密度产生的。为了要确定这两个方程的正确性与合理性,必须证明它们满足非齐次的电磁波方程。还有,洛伦茨规范是一个常用的规范,可以较便利地解析电磁辐射的生成问题。稍后会有表示两个方程满足洛伦茨规范条件的证明。含时电荷分布或含时电流分布所产生的电势或磁矢势,必须遵守达朗贝尔方程,表达为:1假若,这些用启发法推理得到的推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
和推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
不能满足非齐次的电磁波方程,那么,这些推迟势很可能有重大错误,无法适用于期望的用途(从含时源生成电磁辐射)。设定
R
{displaystyle {boldsymbol {mathfrak {R}}}}
为从源位置到场位置的分离矢量:场位置
r
{displaystyle mathbf {r} }
、源位置
r
′
{displaystyle mathbf {r} '}
和时间
t
{displaystyle t}
都是自变数(independent variable)。分离矢量
R
{displaystyle {boldsymbol {mathfrak {R}}}}
和其大小
R
{displaystyle {mathfrak {R}}}
都是应变数(dependent variable),跟场位置
r
{displaystyle mathbf {r} }
、源位置
r
′
{displaystyle mathbf {r} '}
有关。推迟时间
t
r
=
t
−
R
/
c
{displaystyle t_{r}=t-{mathfrak {R}}/c}
也是应变数,跟时间
t
{displaystyle t}
、分离距离
R
{displaystyle {mathfrak {R}}}
有关。推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
的梯度是源电荷密度
ρ
(
r
′
,
t
r
)
{displaystyle rho (mathbf {r} ',,t_{r})}
的全微分是注意到所以,源电荷密度
ρ
(
r
′
,
t
r
)
{displaystyle rho (mathbf {r} ',,t_{r})}
的梯度是其中,
ρ
˙
(
r
′
,
t
r
)
{displaystyle {dot {rho }}(mathbf {r} ',,t_{r})}
定义为
∂
ρ
(
r
′
,
t
)
∂
t
r
{displaystyle {frac {partial rho (mathbf {r} ',,t)}{partial t_{r}}}}
。将这公式代入,推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
的梯度是推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
的拉普拉斯算符是其中,
δ
3
(
R
)
{displaystyle delta ^{3}({boldsymbol {mathfrak {R}}})}
是三维狄拉克δ函数。所以,推迟标势满足非齐次的电磁波方程类似地,可以证明推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
满足非齐次的电磁波方程。给予磁场
B
{displaystyle mathbf {B} }
,并不是只有一个矢量场
A
{displaystyle mathbf {A} }
满足条件
B
=
∇
×
A
{displaystyle mathbf {B} =nabla times mathbf {A} }
。实际上,有无限多个解答。应用一项矢量恒等式,
∇
×
(
∇
λ
)
=
0
{displaystyle nabla times (nabla lambda )=0}
,给予任意函数
λ
{displaystyle lambda }
,那么,
A
=
A
+
∇
λ
{displaystyle mathbb {A} =mathbf {A} +nabla lambda }
也是一个解答。磁矢势的这种特性,称为规范自由。物理学家时常会选择使用某种规范来解析特定的问题。在电磁学里,洛伦茨规范是一个常用的规范,可以便利地解析电磁辐射的生成问题。洛伦茨规范用微分方程表达为按照前述方法,可以证明推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
和推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
满足洛伦茨规范。这是一个很好的练习。推迟势与电场
E
{displaystyle mathbf {E} }
、磁场
B
{displaystyle mathbf {B} }
的关系分别为按照前述方法,可以得到电场
E
{displaystyle mathbf {E} }
和磁场
B
{displaystyle mathbf {B} }
的方程,又称为杰斐缅柯方程:定义超前时间
t
a
{displaystyle t_{a}}
为现在时间
t
{displaystyle t}
加上光波传播的时间:超前标势
Φ
a
(
r
,
t
)
{displaystyle Phi _{a}(mathbf {r} ,,t)}
与超前矢势
A
a
(
r
,
t
)
{displaystyle mathbf {A} _{a}(mathbf {r} ,,t)}
分别用方程表达为这两个方程表明,在时间
t
{displaystyle t}
的超前标势与超前矢势,乃是由在超前时间
t
a
{displaystyle t_{a}}
的源电荷密度或源电流密度产生的。超前标势
Φ
a
(
r
,
t
)
{displaystyle Phi _{a}(mathbf {r} ,,t)}
与超前矢势
A
a
(
r
,
t
)
{displaystyle mathbf {A} _{a}(mathbf {r} ,,t)}
也满足非齐次的电磁波方程和洛伦茨规范,但它们违反了因果律。这是很严峻的问题,未来发生的事件不应该影响过去发生的事件。在物理学里,超前标势和超前矢势只是很有意思的纯理论问题,并没有任何实际用途。
相关
- 结构细胞(英语:Cell)旧称䏭,是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹
- 无衬线体无衬线体(英语:sans-serif)指没有衬线的字体,与衬线字体相反,完全抛弃装饰衬线,只剩下主干,造型简明有力,更具现代感,起源也很晚。适用于标题、广告,瞬间的识别性高。在汉字等东亚字体
- 多孔性孔隙率(英语:Porosity)或孔隙分数是表征材料的孔隙部分的物理量,定义为孔隙的体积与材料总体积的比率,所以总是在0到1之间,用百分数表示,为0到100%之间。由于开孔或与开孔连通的孔
- 胡麻油芝麻油(或称麻油、香油)是以芝麻为原料提炼制作的食用油。高温制程之纯芝麻油气味浓香,常呈淡红色或红中带黄。根据加工制作工艺的不同,分为小磨香油、机制香油和大槽香油三类
- 罗伯特·科赫奖罗伯·柯霍奖(德语:Robert-Koch-Preis),是一组由现代细菌学之父罗伯·柯霍发起成立的生物医学奖,是德国奖金最高的学术奖,以杰出的微生物学、免疫学、医学研究为奖励对象。许多罗
- 西班牙国家男子篮球队西班牙国家男子篮球队是一支代表西班牙参加国际篮球赛事的球队。目前国际男子篮球排名为第二名。
- 全距全距(英语:range,符号R),又称极差,用来表示统计资料中的变异量数(英语:measures of variation),为最大值与最小值之间的差额,即最大值减最小值后所得数值。其中
- 福赫伯福赫伯(英语:Herbert Franke,又译傅海波或杨瑀;1914年9月17日–2011年6月10日)是一位德国汉学家。他以研究金朝和元朝历史而闻名。他同时为《剑桥中国辽西夏金元史》的主编之一。
- 冰架冰架(英语:ice shelf),又称冰棚,是陆地上的冰河或冰原流入海中,浮在海上的大片水冰。只有南极洲、加拿大、俄罗斯和格陵兰的部分海岸存在冰架。当今冰架的厚度可达100至1000米。全
- 按揭抵押(mortgage),是指提供私人资产(不论是否为不动产)作为债务担保的动作,多发生于购买房地产时银行借出的抵押贷款或在典当商折现非不动产的物品。抵押常在银行或地产界使用。在广