推迟势

✍ dations ◷ 2025-07-27 16:01:48 #推迟势
在电磁学里,推迟势指的是,响应含时电荷分布或含时电流分布,而产生的推迟标势或推迟矢势。对于这程序,由于“前因”与“后果”之间必然的推迟关系,讯号以光速从源位置传播到场位置,需要有限时间。在某源位置的电流或电荷分布,必须经过一段时间之后,才能够将其影响传播到场位置,产生对应的电磁作用。这一段时间的长久跟源位置与场位置之间距离的远近有关。对于静态的电荷分布和电流分布,电势 Φ ( r ) {displaystyle Phi (mathbf {r} )} 和磁矢势 A ( r ) {displaystyle mathbf {A} (mathbf {r} )} 分别定义为其中, r {displaystyle mathbf {r} } 是场位置, r ′ {displaystyle mathbf {r} '} 是源位置, ϵ 0 {displaystyle epsilon _{0}} 是真空电容率, μ 0 {displaystyle mu _{0}} 是真空磁导率, ρ {displaystyle rho } 是电荷密度, J {displaystyle mathbf {J} } 是电流密度, V ′ {displaystyle mathbb {V} '} 是体积分的空间, d 3 r ′ {displaystyle d^{3}mathbf {r} '} 是微小体元素。在电动力学里,这两个方程必须加以延伸,才能正确地响应含时电流分布或含时电荷分布。定义推迟时间 t r {displaystyle t_{r}} 为检验时间 t {displaystyle t} 减去电磁波传播的时间:其中, c {displaystyle c} 是光速。假设,从源位置 r ′ {displaystyle mathbf {r} '} 往场位置 r {displaystyle mathbf {r} } 发射出一束电磁波,而这束电磁波在检验时间 t {displaystyle t} 抵达观测者的场位置 r {displaystyle mathbf {r} } ,则这束电磁波发射的时间是推迟时间 t r {displaystyle t_{r}} 。由于电磁波传播于真空的速度是有限的,观测者检验到电磁波的检验时间 t {displaystyle t} ,会不同于这电磁波发射的推迟时间 t r {displaystyle t_{r}} 。推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 与推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 分别用方程定义为请注意,在这两个含时方程内,源电荷密度和源电流密度都跟推迟时间 t r {displaystyle t_{r}} 有关,而不是与时间无关。这两个含时方程,是用推理得到的启发式,而不是用任何定律或公理推导出来的。讯号以光速传播,从源位置到场位置,需要有限时间。所以在时间 t {displaystyle t} 的推迟势必定是由在推迟时间 t r {displaystyle t_{r}} 的源电荷密度或源电流密度产生的。为了要确定这两个方程的正确性与合理性,必须证明它们满足非齐次的电磁波方程。还有,洛伦茨规范是一个常用的规范,可以较便利地解析电磁辐射的生成问题。稍后会有表示两个方程满足洛伦茨规范条件的证明。含时电荷分布或含时电流分布所产生的电势或磁矢势,必须遵守达朗贝尔方程,表达为:1假若,这些用启发法推理得到的推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 和推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 不能满足非齐次的电磁波方程,那么,这些推迟势很可能有重大错误,无法适用于期望的用途(从含时源生成电磁辐射)。设定 R {displaystyle {boldsymbol {mathfrak {R}}}} 为从源位置到场位置的分离矢量:场位置 r {displaystyle mathbf {r} } 、源位置 r ′ {displaystyle mathbf {r} '} 和时间 t {displaystyle t} 都是自变数(independent variable)。分离矢量 R {displaystyle {boldsymbol {mathfrak {R}}}} 和其大小 R {displaystyle {mathfrak {R}}} 都是应变数(dependent variable),跟场位置 r {displaystyle mathbf {r} } 、源位置 r ′ {displaystyle mathbf {r} '} 有关。推迟时间 t r = t − R / c {displaystyle t_{r}=t-{mathfrak {R}}/c} 也是应变数,跟时间 t {displaystyle t} 、分离距离 R {displaystyle {mathfrak {R}}} 有关。推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的梯度是源电荷密度 ρ ( r ′ , t r ) {displaystyle rho (mathbf {r} ',,t_{r})} 的全微分是注意到所以,源电荷密度 ρ ( r ′ , t r ) {displaystyle rho (mathbf {r} ',,t_{r})} 的梯度是其中, ρ ˙ ( r ′ , t r ) {displaystyle {dot {rho }}(mathbf {r} ',,t_{r})} 定义为 ∂ ρ ( r ′ , t ) ∂ t r {displaystyle {frac {partial rho (mathbf {r} ',,t)}{partial t_{r}}}} 。将这公式代入,推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的梯度是推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 的拉普拉斯算符是其中, δ 3 ( R ) {displaystyle delta ^{3}({boldsymbol {mathfrak {R}}})} 是三维狄拉克δ函数。所以,推迟标势满足非齐次的电磁波方程类似地,可以证明推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 满足非齐次的电磁波方程。给予磁场 B {displaystyle mathbf {B} } ,并不是只有一个矢量场 A {displaystyle mathbf {A} } 满足条件 B = ∇ × A {displaystyle mathbf {B} =nabla times mathbf {A} } 。实际上,有无限多个解答。应用一项矢量恒等式, ∇ × ( ∇ λ ) = 0 {displaystyle nabla times (nabla lambda )=0} ,给予任意函数 λ {displaystyle lambda } ,那么, A = A + ∇ λ {displaystyle mathbb {A} =mathbf {A} +nabla lambda } 也是一个解答。磁矢势的这种特性,称为规范自由。物理学家时常会选择使用某种规范来解析特定的问题。在电磁学里,洛伦茨规范是一个常用的规范,可以便利地解析电磁辐射的生成问题。洛伦茨规范用微分方程表达为按照前述方法,可以证明推迟标势 Φ ( r , t ) {displaystyle Phi (mathbf {r} ,,t)} 和推迟矢势 A ( r , t ) {displaystyle mathbf {A} (mathbf {r} ,,t)} 满足洛伦茨规范。这是一个很好的练习。推迟势与电场 E {displaystyle mathbf {E} } 、磁场 B {displaystyle mathbf {B} } 的关系分别为按照前述方法,可以得到电场 E {displaystyle mathbf {E} } 和磁场 B {displaystyle mathbf {B} } 的方程,又称为杰斐缅柯方程:定义超前时间 t a {displaystyle t_{a}} 为现在时间 t {displaystyle t} 加上光波传播的时间:超前标势 Φ a ( r , t ) {displaystyle Phi _{a}(mathbf {r} ,,t)} 与超前矢势 A a ( r , t ) {displaystyle mathbf {A} _{a}(mathbf {r} ,,t)} 分别用方程表达为这两个方程表明,在时间 t {displaystyle t} 的超前标势与超前矢势,乃是由在超前时间 t a {displaystyle t_{a}} 的源电荷密度或源电流密度产生的。超前标势 Φ a ( r , t ) {displaystyle Phi _{a}(mathbf {r} ,,t)} 与超前矢势 A a ( r , t ) {displaystyle mathbf {A} _{a}(mathbf {r} ,,t)} 也满足非齐次的电磁波方程和洛伦茨规范,但它们违反了因果律。这是很严峻的问题,未来发生的事件不应该影响过去发生的事件。在物理学里,超前标势和超前矢势只是很有意思的纯理论问题,并没有任何实际用途。

相关

  • 除草剂除草剂又称杀草剂,是一类用来杀死特定植物的药剂,全球约有233种。这些药剂能够选择性地作用于特定目标,使其他对于人类有用的农作物不受伤害,或受的伤害较小。有些除草剂能妨碍
  • 社会神经科学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
  • 工厂工厂(有时又作工场)又称制造厂,是一所用以生产货物的大型工业楼宇。大部分工厂皆设有以大型机器或设备构成的生产线。普遍相信古代中国首先出现工厂。据《周礼》记载官营和民营
  • 波拉尼约翰·查尔斯·波拉尼(英语:John Charles Polanyi,1929年1月23日-),出生于柏林,匈牙利犹太裔加拿大化学家。加拿大多伦多大学化学系教授。波拉尼曾于1982年获沃尔夫化学奖。1986年,
  • 卡塔尔埃米尔卡达国埃米尔是卡塔尔的君主,由阿勒萨尼家族统治。
  • 乔治·达尔文乔治·霍华德·达尔文爵士,FRS(英语:Sir George Howard Darwin,1845年7月9日-1912年12月7日),英国天文学家和数学家。他是查尔斯·达尔文和艾玛·达尔文的第二个儿子(所有儿女中排行
  • 非参数统计非参数统计分析(英语:nonparametric statistics),或称非参数统计学,统计学的分支,适用于母群体分布情况未明、小样本、母群体分布不为常态也不易转换为常态。特点在于尽量减少或不
  • 游行游行,或称为游行示威,是指民众走到街头示威,对特定议题表达不满。在中国大陆的特殊政治背景下,“散步”成为一种独特的游行方式。在台湾则使用“路过”一词做为规避《集会游行法
  • 1129年重要事件及趋势重要人物
  • 分期付款分期付款是指在一次交易行为分多次还清欠款。分期付款还可以指:分期付款分期付款可分为有息和无息两种。有息分期付款通常先偿还利息,再付清本金,通常付款总额远高于实际交易价