首页 >
推迟势
✍ dations ◷ 2025-04-06 16:04:39 #推迟势
在电磁学里,推迟势指的是,响应含时电荷分布或含时电流分布,而产生的推迟标势或推迟矢势。对于这程序,由于“前因”与“后果”之间必然的推迟关系,讯号以光速从源位置传播到场位置,需要有限时间。在某源位置的电流或电荷分布,必须经过一段时间之后,才能够将其影响传播到场位置,产生对应的电磁作用。这一段时间的长久跟源位置与场位置之间距离的远近有关。对于静态的电荷分布和电流分布,电势
Φ
(
r
)
{displaystyle Phi (mathbf {r} )}
和磁矢势
A
(
r
)
{displaystyle mathbf {A} (mathbf {r} )}
分别定义为其中,
r
{displaystyle mathbf {r} }
是场位置,
r
′
{displaystyle mathbf {r} '}
是源位置,
ϵ
0
{displaystyle epsilon _{0}}
是真空电容率,
μ
0
{displaystyle mu _{0}}
是真空磁导率,
ρ
{displaystyle rho }
是电荷密度,
J
{displaystyle mathbf {J} }
是电流密度,
V
′
{displaystyle mathbb {V} '}
是体积分的空间,
d
3
r
′
{displaystyle d^{3}mathbf {r} '}
是微小体元素。在电动力学里,这两个方程必须加以延伸,才能正确地响应含时电流分布或含时电荷分布。定义推迟时间
t
r
{displaystyle t_{r}}
为检验时间
t
{displaystyle t}
减去电磁波传播的时间:其中,
c
{displaystyle c}
是光速。假设,从源位置
r
′
{displaystyle mathbf {r} '}
往场位置
r
{displaystyle mathbf {r} }
发射出一束电磁波,而这束电磁波在检验时间
t
{displaystyle t}
抵达观测者的场位置
r
{displaystyle mathbf {r} }
,则这束电磁波发射的时间是推迟时间
t
r
{displaystyle t_{r}}
。由于电磁波传播于真空的速度是有限的,观测者检验到电磁波的检验时间
t
{displaystyle t}
,会不同于这电磁波发射的推迟时间
t
r
{displaystyle t_{r}}
。推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
与推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
分别用方程定义为请注意,在这两个含时方程内,源电荷密度和源电流密度都跟推迟时间
t
r
{displaystyle t_{r}}
有关,而不是与时间无关。这两个含时方程,是用推理得到的启发式,而不是用任何定律或公理推导出来的。讯号以光速传播,从源位置到场位置,需要有限时间。所以在时间
t
{displaystyle t}
的推迟势必定是由在推迟时间
t
r
{displaystyle t_{r}}
的源电荷密度或源电流密度产生的。为了要确定这两个方程的正确性与合理性,必须证明它们满足非齐次的电磁波方程。还有,洛伦茨规范是一个常用的规范,可以较便利地解析电磁辐射的生成问题。稍后会有表示两个方程满足洛伦茨规范条件的证明。含时电荷分布或含时电流分布所产生的电势或磁矢势,必须遵守达朗贝尔方程,表达为:1假若,这些用启发法推理得到的推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
和推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
不能满足非齐次的电磁波方程,那么,这些推迟势很可能有重大错误,无法适用于期望的用途(从含时源生成电磁辐射)。设定
R
{displaystyle {boldsymbol {mathfrak {R}}}}
为从源位置到场位置的分离矢量:场位置
r
{displaystyle mathbf {r} }
、源位置
r
′
{displaystyle mathbf {r} '}
和时间
t
{displaystyle t}
都是自变数(independent variable)。分离矢量
R
{displaystyle {boldsymbol {mathfrak {R}}}}
和其大小
R
{displaystyle {mathfrak {R}}}
都是应变数(dependent variable),跟场位置
r
{displaystyle mathbf {r} }
、源位置
r
′
{displaystyle mathbf {r} '}
有关。推迟时间
t
r
=
t
−
R
/
c
{displaystyle t_{r}=t-{mathfrak {R}}/c}
也是应变数,跟时间
t
{displaystyle t}
、分离距离
R
{displaystyle {mathfrak {R}}}
有关。推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
的梯度是源电荷密度
ρ
(
r
′
,
t
r
)
{displaystyle rho (mathbf {r} ',,t_{r})}
的全微分是注意到所以,源电荷密度
ρ
(
r
′
,
t
r
)
{displaystyle rho (mathbf {r} ',,t_{r})}
的梯度是其中,
ρ
˙
(
r
′
,
t
r
)
{displaystyle {dot {rho }}(mathbf {r} ',,t_{r})}
定义为
∂
ρ
(
r
′
,
t
)
∂
t
r
{displaystyle {frac {partial rho (mathbf {r} ',,t)}{partial t_{r}}}}
。将这公式代入,推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
的梯度是推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
的拉普拉斯算符是其中,
δ
3
(
R
)
{displaystyle delta ^{3}({boldsymbol {mathfrak {R}}})}
是三维狄拉克δ函数。所以,推迟标势满足非齐次的电磁波方程类似地,可以证明推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
满足非齐次的电磁波方程。给予磁场
B
{displaystyle mathbf {B} }
,并不是只有一个矢量场
A
{displaystyle mathbf {A} }
满足条件
B
=
∇
×
A
{displaystyle mathbf {B} =nabla times mathbf {A} }
。实际上,有无限多个解答。应用一项矢量恒等式,
∇
×
(
∇
λ
)
=
0
{displaystyle nabla times (nabla lambda )=0}
,给予任意函数
λ
{displaystyle lambda }
,那么,
A
=
A
+
∇
λ
{displaystyle mathbb {A} =mathbf {A} +nabla lambda }
也是一个解答。磁矢势的这种特性,称为规范自由。物理学家时常会选择使用某种规范来解析特定的问题。在电磁学里,洛伦茨规范是一个常用的规范,可以便利地解析电磁辐射的生成问题。洛伦茨规范用微分方程表达为按照前述方法,可以证明推迟标势
Φ
(
r
,
t
)
{displaystyle Phi (mathbf {r} ,,t)}
和推迟矢势
A
(
r
,
t
)
{displaystyle mathbf {A} (mathbf {r} ,,t)}
满足洛伦茨规范。这是一个很好的练习。推迟势与电场
E
{displaystyle mathbf {E} }
、磁场
B
{displaystyle mathbf {B} }
的关系分别为按照前述方法,可以得到电场
E
{displaystyle mathbf {E} }
和磁场
B
{displaystyle mathbf {B} }
的方程,又称为杰斐缅柯方程:定义超前时间
t
a
{displaystyle t_{a}}
为现在时间
t
{displaystyle t}
加上光波传播的时间:超前标势
Φ
a
(
r
,
t
)
{displaystyle Phi _{a}(mathbf {r} ,,t)}
与超前矢势
A
a
(
r
,
t
)
{displaystyle mathbf {A} _{a}(mathbf {r} ,,t)}
分别用方程表达为这两个方程表明,在时间
t
{displaystyle t}
的超前标势与超前矢势,乃是由在超前时间
t
a
{displaystyle t_{a}}
的源电荷密度或源电流密度产生的。超前标势
Φ
a
(
r
,
t
)
{displaystyle Phi _{a}(mathbf {r} ,,t)}
与超前矢势
A
a
(
r
,
t
)
{displaystyle mathbf {A} _{a}(mathbf {r} ,,t)}
也满足非齐次的电磁波方程和洛伦茨规范,但它们违反了因果律。这是很严峻的问题,未来发生的事件不应该影响过去发生的事件。在物理学里,超前标势和超前矢势只是很有意思的纯理论问题,并没有任何实际用途。
相关
- 三溴苯酚三溴苯酚(2,4,6-Tribromophenol;简称:TBP),属芳香族化合物。白色针状或棱状晶体,具刺激性气味。溶于吡啶、醇、乙醚、丙酮、丁酮、氯仿和甲苯等有机溶剂及氢氧化钠溶液,微溶于水(59-
- 巴黎绿巴黎绿(英语:Paris Green),化学名醋酸亚砷酸铜(英语:Copper(II) acetoarsenite)是一种高毒性的铜盐,常温下为鲜绿色晶体。 虽然巴黎绿有剧毒,但因为价格便宜且天然,因此它曾是一种广泛
- 摩门教耶稣基督后期圣徒教会文化上相近的几个后期圣徒运动宗派,其最大的宗派为耶稣基督后期圣徒教会。耶稣基督后期圣徒教会也常被用来描述这个相信《摩尔门经》的信仰系统。该派别
- 弗兰克·阿尔伯特·科顿弗兰克·阿尔伯特·科顿(英语:Frank Albert Cotton,1930年4月9日-2007年2月20日),曾任W·T·达赫迪-韦尔奇基金会主席、德州农工大学特聘教授。科顿因对过渡金属的研究而知名。他
- 国家面积列表索引 国防预算 石油储量 军事(武装部队) 死刑 国债 生育率 最高点 官方语言 地理 政体 面积 代码 陆地面积 人口 人口密度 国内生产总值 国徽 国旗 国歌 国家格言 首都 城市
- 标准氨基酸标准氨基酸(英语:Standard amino acids)或称蛋白氨基酸(proteinogenic amino acids),是生物细胞中用来合成蛋白质的共20种氨基酸。本列表主要描述其名称、标示方法、结构与性质。
- 印度快报《印度快报》(英语:The Indian Express) ,是印度一份英语日报,始创于1933年,在印度九个主要城市(那格浦尔、德里、孟买、加尔各答、浦那、卢迪亚纳、昌迪加尔、勒克瑙和艾哈迈达巴
- 利奥·贝克兰利奥·亨利斯·亚瑟·贝克兰,FRSE(Hon)(德语:Leo Henricus Arthur Baekeland,1863年11月14日-1944年2月23日),比利时裔美国化学家。他在1893年发明了Velox相纸,在1907年发明了Bakeli
- 聚缩醛聚甲醛(英文:Polyoxymethylene,以下简称POM),又称聚氧化亚甲基、聚缩醛,是一种在工程中使用的热塑性塑料,适用于高刚性,低摩擦和优异的尺寸稳定性的场合。聚甲醛典型的注塑成型应用
- 划船划船是一项依靠桨(英语:Oar)在水中的运动来推动船只的活动,它通过划水来推动船只前进。其中的桨可以是通过机械连接在船上的,或者是手持的(没有与船的机械连接)。本条目涉及的是更