回归分析

✍ dations ◷ 2025-09-18 19:39:36 #回归分析
回归分析(英语:Regression Analysis)是一种统计学上分析数据的方法,目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测研究者感兴趣的变量。更具体的来说,回归分析可以帮助人们了解在只有一个自变量变化时因变量的变化量。一般来说,通过回归分析我们可以由给出的自变量估计因变量的条件期望。回归分析是建立因变量 Y {displaystyle Y} (或称依变量,反因变量)与自变量 X {displaystyle X} (或称独变量,解释变量)之间关系的模型。简单线性回归使用一个自变量 X {displaystyle X} ,复回归使用超过一个自变量( X 1 , X 2 . . . X i {displaystyle X_{1},X_{2}...X_{i}} )。回归的最早形式是最小二乘法,由1805年的勒让德(Legendre),和1809年的高斯(Gauss)出版。勒让德和高斯都将该方法应用于从天文观测中确定关于太阳的物体的轨道(主要是彗星,但后来是新发现的小行星)的问题。 高斯在1821年发表了最小二乘理论的进一步发展,包括高斯-马尔可夫定理的一个版本。“回归”一词最早由法兰西斯·高尔顿(Francis Galton)所使用。他曾对亲子间的身高做研究,发现父母的身高虽然会遗传给子女,但子女的身高却有逐渐“回归到中等(即人的平均值)”的现象。不过当时的回归和现在的回归在意义上已不尽相同。在1950年代和60年代,经济学家使用机械电子桌面计算器来计算回归。在1970年之前,它有时需要长达24小时从一个回归接收结果。回归模型主要包括以下变量:回归模型将 Y {displaystyle Y} 和一个关于 X {displaystyle mathbf {X} } 和 β {displaystyle beta } 的函数关联起来。在不同的应用领域有各自不同的术语代替这里的“自变量”和“因变量”。这个估计值通常写作: E ( X | Y ) = f ( X , β ) {displaystyle E(X|Y)=f(mathbf {X} ,{boldsymbol {beta }})} 。在进行回归分析时,函数 f {displaystyle f} 的形式必须预先指定。有时函数 f {displaystyle f} 的形式是在对 Y {displaystyle Y} 和 X {displaystyle mathbf {X} } 关系的已有知识上建立的,而不是在数据的基础之上。如果没有这种已有知识,那么就要选择一个灵活和便于回归的 f {displaystyle f} 的形式。假设现在未知向量 β {displaystyle beta } 的维数为k。为了进行回归分析,必须要先有关于 Y {displaystyle Y} 的信息:在最后一种情况下,回归分析提供了一种完成以下任务的工具: ⒈找出一个未知量 β {displaystyle beta } 的解使因变量 Y {displaystyle Y} 的预测值和实际值差别最小(又称最小二乘法)。⒉在特定统计假设下,回归分析使用数据中的多余信息给出关于因变量 Y {displaystyle Y} 和未知量 β {displaystyle beta } 之间的关系。简单线性回归(英语:Simple linear regression)(英语:simple linear regression)复回归分析(英语:multiple regression analysis)是简单线性回归的一种延伸应用,用以了解一个依变项与两组以上自变项的函数关系。对数线性回归(英语:Log-linear model)(英语:Log-linear model),是将解释变项(实验设计中的自变项)和反应变项(实验设计中的依变项)都取对数值之后再进行线性回归,所以依据解释变项的数量,可能是对数简单线性回归,也可能是对数复回归。对数几率回归(英语:Logistic Regression)偏回归(英语:Partial Regression)(英语:Partial Regression)

相关

  • 子实体在真菌学中,子实体(英语:Sporocarp、fruiting body)是高等真菌产生的多细胞的有性产孢结构,其上附有产孢的子囊、担子等构造。子实体是真菌生活史中的有性阶段,无性阶段则是营养生
  • 线虫动物线虫动物门(学名:Nematoda)是动物界中最大的门之一,为假体腔动物,绝大多数体小呈圆柱形,又称圆虫(roundworms)。线虫的物种很不容易区分,有相关描述的已超过二万五千种,其中超过一半是
  • 氧气氧气(英语:Oxygen, Dioxygen,分子式:O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助
  • 霉菌霉菌是非分类学名词,是对菌丝体发达,而又不产生大型肉质子实体的丝状真菌的俗称。霉菌的菌丝呈长管、分枝状,无横隔壁,具多个细胞核,并会聚成菌丝体。霉菌常用孢子的颜色来称呼,如
  • 农村农村(乡村),对应于城市的称谓,指农业区,有集镇、村落,以农业产业(自然经济和第一产业)为主,包括各种农场(包括畜牧和水产养殖场)、林场(林业生产区)、园艺和蔬菜生产等。跟人口集中的城镇
  • 胃食管反流病胃食道逆流(英文:Gastroesophageal reflux disease、heartburn reflux,缩写:GERD),或称作胃食管反流病、胃酸倒流等,是指胃酸(有时加上十二指肠液)长期不正常地向上反流进入食道甚至
  • 成土作用成土作用是土壤形成的过程,也称为成土过程,这也是母质产生肥力而转变成土壤的过程。母质又是岩石的风化产物。因此从母岩变成土壤,实际上包括两个相互关联的不同过程,即从母岩形
  • 撒哈拉撒哈拉沙漠(阿拉伯语:الصحراء الكبرى‎,aṣ-Ṣaḥrāʾ al-Kubrā ,“大沙漠”)是世界最热的荒漠,亦是世界第三大荒漠,仅次于南极和北极,同时也是世界上最大的沙漠,其
  • 螯虾淡水龙虾,俗称小龙虾,在中国各地又名蝲蛄、螯虾,是多种淡水虾类统称,因形似龙虾(Palinuridae)而得名。包含拟螯虾科(Parastacidae)、正螯虾科(或称蟹虾科)(Astacidae)和螯虾科(或称蝲蛄科
  • 大会主席联合国大会主席(President of the United Nations General Assembly),负责联合国大会的各项会议议程。联合国大会主席任期1年。现任主席为尼日利亚的蒂贾尼·穆罕默德·班德(英