首页 >
学生it检验
✍ dations ◷ 2025-09-18 05:39:55 #学生<i>t</i>检验
学生t检验(英语:Student's t-test)是指虚无假设成立时的任一检定统计有学生t-分布的统计假说检定,属于母数统计。学生t检验常作为检验一群来自正态分配总体的独立样本之期望值的是否为某一实数,或是二(两)群来自正态分配总体的独立样本之期望值的差是否为某一实数。举个简单的例子,也就是说我们可以在抓取一个班级的男生,去比较该班与全校男生之身高差异程度是不是推测的那样,或是不同年级班上的男生身高的差异的场合是否一如预期使用此检验法。学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生”则是他的笔名。
基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈斯特受雇于都柏林的健力士酿酒厂担任统计学家。戈斯特提出了t检验以降低啤酒质量监控的成本。戈斯特于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈斯特真实身份的。今日,它更常被应用于小样本判断的置信度。最常用t检验的情况有:大多数的t检定之统计量具有t = Z/k的形式,其中Z与k是已知资料的函数。Z通常被设计成对于对立假说有关的形式,而k是一个尺度参数使t服从于t分布。以单样本t检验为例,
Z
=
X
¯
/
(
σ
/
n
)
{displaystyle Z={bar {X}}/(sigma /{sqrt {n}})}
,其中
X
¯
{displaystyle {bar {X}}}
为样本平均数,
n
{displaystyle n}
为样本数,
σ
{displaystyle sigma }
为总体标准差。至于k在单样本t检验中为
σ
^
/
σ
{displaystyle {hat {sigma }}/sigma }
,其中
σ
^
{displaystyle {hat {sigma }}}
为样本的标准偏差。在符合零假说的条件下,t检定有以下前提:检验零假说为一群来自正态分配独立样本xi之总体期望值μ为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
x
¯
=
∑
i
=
1
n
x
i
n
{displaystyle {overline {x}}={frac {sum _{i=1}^{n}x_{i}}{n}}}
为样本平均数,
s
=
∑
i
=
1
n
(
x
i
−
x
¯
)
2
n
−
1
{displaystyle s={sqrt {frac {sum _{i=1}^{n}(x_{i}-{overline {x}})^{2}}{n-1}}}}
为样本标准偏差,n为样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。配对样本t检验可视为单样本t检验的扩展,不过检验的对象由一群来自正态分配独立样本更改为二群配对样本之观测值之差。若二群配对样本x1i与x2i之差为di = x1i − x2i独立且来自正态分配,则di之总体期望值μ是否为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
d
¯
=
∑
i
=
1
n
d
i
n
{displaystyle {overline {d}}={frac {sum _{i=1}^{n}d_{i}}{n}}}
为配对样本差值之平均数,
s
d
=
∑
i
=
1
n
(
d
i
−
d
¯
)
2
n
−
1
{displaystyle s_{d}={sqrt {frac {sum _{i=1}^{n}(d_{i}-{overline {d}})^{2}}{n-1}}}}
为配对样本差值之标准偏差,n为配对样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。若二群独立样本x1i与x2i具有相同之样本数n,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
x
¯
1
=
(
∑
i
=
1
n
x
1
i
)
/
n
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n}
及
x
¯
2
=
(
∑
i
=
1
n
x
2
i
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n}
为二群样本各自的平均数,
s
p
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
+
∑
i
=
1
n
(
x
2
i
−
x
¯
2
)
2
)
/
(
2
n
−
2
)
{displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{i=1}^{n}(x_{2i}-{overline {x}}_{2})^{2})/(2n-2)}
为样本之共同方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为2n − 2的t分布。若二群独立样本x1i与x2j具有不相同之样本数n1与n2,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
1
{displaystyle i=1ldots n_{1}}
,其中
j
=
1
…
n
2
{displaystyle j=1ldots n_{2}}
,
x
¯
1
=
(
∑
i
=
1
n
x
1
i
)
/
n
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n}
及
x
¯
2
=
(
∑
i
=
1
n
x
2
i
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n}
为二群样本各自的平均数,
s
p
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
+
∑
j
=
1
n
(
x
2
j
−
x
¯
2
)
2
)
/
(
n
1
+
n
2
−
2
)
{displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{1}+n_{2}-2)}
为二群样本共同之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为n1 + n2 − 2的t分布。若二群独立样本x1i与x2j具有相等或不相同之样本数n1与n2,并且彼此独立及来自二个方差不相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
1
{displaystyle i=1ldots n_{1}}
,其中
j
=
1
…
n
2
{displaystyle j=1ldots n_{2}}
,
x
¯
1
=
(
∑
i
=
1
n
1
x
1
i
)
/
n
1
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n_{1}}x_{1i})/n_{1}}
及
x
¯
2
=
(
∑
j
=
1
n
2
x
2
j
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{j=1}^{n_{2}}x_{2j})/n}
为二群样本各自的平均数,
s
1
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
)
/
(
n
1
−
1
)
{displaystyle s_{1}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2})/(n_{1}-1)}
及
s
2
2
=
(
∑
j
=
1
n
(
x
2
j
−
x
¯
2
)
2
)
/
(
n
2
−
1
)
{displaystyle s_{2}^{2}=(sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{2}-1)}
分别为二群样本之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为之t分布。这种方法又常称为Welch检验。在简单线性回归的模型其中xi,i = 1, ..., n为已知,α与β为未知系数,εi为残差独立且服从期望值0且方差σ2未知的正态分布,yi,i = 1, ..., n为观测值。我们可以检验回归系数(在此例即为回归式之斜率)β是否相等于特定的β0(通常使β0 = 0以检验xi对yi是否有关联)。令
α
^
{displaystyle {widehat {alpha }}}
与
β
^
{displaystyle {widehat {beta }}}
为最小二乘法之估计值,
S
E
α
^
{displaystyle SE_{widehat {alpha }}}
与
S
E
β
^
{displaystyle SE_{widehat {beta }}}
为最小二乘法估计值之标准误差,则在零假设为β = β0的情况下服从自由度为n − 2之t分布,其中由于
ε
^
i
=
y
i
−
y
^
i
=
y
i
−
(
α
^
+
β
^
x
i
)
{displaystyle {widehat {varepsilon }}_{i}=y_{i}-{widehat {y}}_{i}=y_{i}-({widehat {alpha }}+{widehat {beta }}x_{i})}
为残差(即估计误差),而
SSR
=
∑
i
=
1
n
ε
^
i
2
{displaystyle {text{SSR}}=sum _{i=1}^{n}{widehat {varepsilon }}_{i}^{;2}}
为残差之离均平方和,我们可改写t为另请参阅:方差齐性检验(F检验)大多数的试算表软件及统计软件,诸如QtiPlot、OpenOffice.org Calc、LibreOffice Calc、Microsoft Excel、SAS、SPSS、Stata、DAP、gretl、R、Python ()、PSPP、Minitab等,都可以进行t检验之运算。
相关
- 主要死因之一下表所示为2002年全年对世界范围内的人类死亡及致死原因的统计,由上而下,按各致死原因导致的死亡人数在总死亡人数中所占比例排列。如该表所计,该年份世界死亡人口总数约为57,0
- 气胸气胸(英语:pneumothorax),又称肺膜穿、爆肺,系指空气不正常地积聚在肺部与胸壁(英语:chest wall)之间的胸膜腔,典型症状有突发性单边胸部刺痛发作和呼吸困难,少部分案例中,受损的组织区
- 生物数学数理生物学(英语:mathematical and theoretical biology),又称数学生物学(英语:mathematical biology)或生物数学(英语:biomathematics)是一个跨学科的领域,其主要目标是利用数学的技巧
- 温泉温泉(英语:hot spring)是一种由地下自然涌出的泉水,其水温较环境年平均温高摄氏5度,或华氏10度以上。在学术上,涌出地表的泉水温度高于当地的地下水温者,即可称为温泉。温泉的形成
- 甲状腺机能亢进甲状腺功能亢进症(Hyperthyroidism),又称甲状腺机能亢进症,简称甲状腺亢进、甲亢,是一种由于体内过量的三碘甲腺原氨酸(T3)和 四碘甲腺原氨酸(T4,也即甲状腺素)造成的临床症状。而甲状
- 菌根菌根(希腊语:μυκός, mykós, "fungus",和ρίζα, riza, "root",,英语:mycorrhiza,复数形式mycorrhizae或mycorrhizas)指的是维管束植物的根与真菌组成的共生关系体。 它菌
- 环孢素环孢素(英语:Cyclosporine、Cyclosporine A、Ciclosporin)也称为“环孢菌素”或“环孢霉素”,是一种被广泛用于预防器官移植排斥的免疫抑制剂。它借由抑制T细胞的活性跟生长而达
- 油油,是由一种或多种液态的碳氢化合物组成的物质。由于油具有疏水性的特性,“油”亦是许多与水不溶之液体的总称。而可以在油中溶解的物质都具有亲油性,一般不溶于水。油和水可以
- 水解酶水解酶【英文:Hydrolase】是一种催化化学键的水解的酶。举例来说,一种酶催化以下的化学反应就是水解酶:水解酶是以“(底物)水解酶”这种格式来命名。但是,一般的名称却是“(底物
- 耐氧厌氧生物厌氧生物,或称厌气生物,是指一种不需要氧气生长的生物。它们大致上可以分为三种,即专性厌氧生物、兼性厌氧生物及耐氧厌氧生物 。人体内的厌氧生物多存在于消化系统中,有些种类