首页 >
学生it检验
✍ dations ◷ 2025-05-15 09:23:21 #学生<i>t</i>检验
学生t检验(英语:Student's t-test)是指虚无假设成立时的任一检定统计有学生t-分布的统计假说检定,属于母数统计。学生t检验常作为检验一群来自正态分配总体的独立样本之期望值的是否为某一实数,或是二(两)群来自正态分配总体的独立样本之期望值的差是否为某一实数。举个简单的例子,也就是说我们可以在抓取一个班级的男生,去比较该班与全校男生之身高差异程度是不是推测的那样,或是不同年级班上的男生身高的差异的场合是否一如预期使用此检验法。学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生”则是他的笔名。
基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈斯特受雇于都柏林的健力士酿酒厂担任统计学家。戈斯特提出了t检验以降低啤酒质量监控的成本。戈斯特于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈斯特真实身份的。今日,它更常被应用于小样本判断的置信度。最常用t检验的情况有:大多数的t检定之统计量具有t = Z/k的形式,其中Z与k是已知资料的函数。Z通常被设计成对于对立假说有关的形式,而k是一个尺度参数使t服从于t分布。以单样本t检验为例,
Z
=
X
¯
/
(
σ
/
n
)
{displaystyle Z={bar {X}}/(sigma /{sqrt {n}})}
,其中
X
¯
{displaystyle {bar {X}}}
为样本平均数,
n
{displaystyle n}
为样本数,
σ
{displaystyle sigma }
为总体标准差。至于k在单样本t检验中为
σ
^
/
σ
{displaystyle {hat {sigma }}/sigma }
,其中
σ
^
{displaystyle {hat {sigma }}}
为样本的标准偏差。在符合零假说的条件下,t检定有以下前提:检验零假说为一群来自正态分配独立样本xi之总体期望值μ为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
x
¯
=
∑
i
=
1
n
x
i
n
{displaystyle {overline {x}}={frac {sum _{i=1}^{n}x_{i}}{n}}}
为样本平均数,
s
=
∑
i
=
1
n
(
x
i
−
x
¯
)
2
n
−
1
{displaystyle s={sqrt {frac {sum _{i=1}^{n}(x_{i}-{overline {x}})^{2}}{n-1}}}}
为样本标准偏差,n为样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。配对样本t检验可视为单样本t检验的扩展,不过检验的对象由一群来自正态分配独立样本更改为二群配对样本之观测值之差。若二群配对样本x1i与x2i之差为di = x1i − x2i独立且来自正态分配,则di之总体期望值μ是否为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
d
¯
=
∑
i
=
1
n
d
i
n
{displaystyle {overline {d}}={frac {sum _{i=1}^{n}d_{i}}{n}}}
为配对样本差值之平均数,
s
d
=
∑
i
=
1
n
(
d
i
−
d
¯
)
2
n
−
1
{displaystyle s_{d}={sqrt {frac {sum _{i=1}^{n}(d_{i}-{overline {d}})^{2}}{n-1}}}}
为配对样本差值之标准偏差,n为配对样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。若二群独立样本x1i与x2i具有相同之样本数n,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
x
¯
1
=
(
∑
i
=
1
n
x
1
i
)
/
n
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n}
及
x
¯
2
=
(
∑
i
=
1
n
x
2
i
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n}
为二群样本各自的平均数,
s
p
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
+
∑
i
=
1
n
(
x
2
i
−
x
¯
2
)
2
)
/
(
2
n
−
2
)
{displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{i=1}^{n}(x_{2i}-{overline {x}}_{2})^{2})/(2n-2)}
为样本之共同方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为2n − 2的t分布。若二群独立样本x1i与x2j具有不相同之样本数n1与n2,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
1
{displaystyle i=1ldots n_{1}}
,其中
j
=
1
…
n
2
{displaystyle j=1ldots n_{2}}
,
x
¯
1
=
(
∑
i
=
1
n
x
1
i
)
/
n
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n}
及
x
¯
2
=
(
∑
i
=
1
n
x
2
i
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n}
为二群样本各自的平均数,
s
p
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
+
∑
j
=
1
n
(
x
2
j
−
x
¯
2
)
2
)
/
(
n
1
+
n
2
−
2
)
{displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{1}+n_{2}-2)}
为二群样本共同之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为n1 + n2 − 2的t分布。若二群独立样本x1i与x2j具有相等或不相同之样本数n1与n2,并且彼此独立及来自二个方差不相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
1
{displaystyle i=1ldots n_{1}}
,其中
j
=
1
…
n
2
{displaystyle j=1ldots n_{2}}
,
x
¯
1
=
(
∑
i
=
1
n
1
x
1
i
)
/
n
1
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n_{1}}x_{1i})/n_{1}}
及
x
¯
2
=
(
∑
j
=
1
n
2
x
2
j
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{j=1}^{n_{2}}x_{2j})/n}
为二群样本各自的平均数,
s
1
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
)
/
(
n
1
−
1
)
{displaystyle s_{1}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2})/(n_{1}-1)}
及
s
2
2
=
(
∑
j
=
1
n
(
x
2
j
−
x
¯
2
)
2
)
/
(
n
2
−
1
)
{displaystyle s_{2}^{2}=(sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{2}-1)}
分别为二群样本之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为之t分布。这种方法又常称为Welch检验。在简单线性回归的模型其中xi,i = 1, ..., n为已知,α与β为未知系数,εi为残差独立且服从期望值0且方差σ2未知的正态分布,yi,i = 1, ..., n为观测值。我们可以检验回归系数(在此例即为回归式之斜率)β是否相等于特定的β0(通常使β0 = 0以检验xi对yi是否有关联)。令
α
^
{displaystyle {widehat {alpha }}}
与
β
^
{displaystyle {widehat {beta }}}
为最小二乘法之估计值,
S
E
α
^
{displaystyle SE_{widehat {alpha }}}
与
S
E
β
^
{displaystyle SE_{widehat {beta }}}
为最小二乘法估计值之标准误差,则在零假设为β = β0的情况下服从自由度为n − 2之t分布,其中由于
ε
^
i
=
y
i
−
y
^
i
=
y
i
−
(
α
^
+
β
^
x
i
)
{displaystyle {widehat {varepsilon }}_{i}=y_{i}-{widehat {y}}_{i}=y_{i}-({widehat {alpha }}+{widehat {beta }}x_{i})}
为残差(即估计误差),而
SSR
=
∑
i
=
1
n
ε
^
i
2
{displaystyle {text{SSR}}=sum _{i=1}^{n}{widehat {varepsilon }}_{i}^{;2}}
为残差之离均平方和,我们可改写t为另请参阅:方差齐性检验(F检验)大多数的试算表软件及统计软件,诸如QtiPlot、OpenOffice.org Calc、LibreOffice Calc、Microsoft Excel、SAS、SPSS、Stata、DAP、gretl、R、Python ()、PSPP、Minitab等,都可以进行t检验之运算。
相关
- 扁桃腺扁桃腺,又称扁桃体,是人和两栖类以上动物,鼻后孔的顶壁或咽与口腔、鼻腔交界处粘膜下淋巴组织所集成的团块的通称,因为外形像扁桃一样而得名。一般所说的扁桃腺是指肉眼可见的颚
- 青霉素G苄青霉素(英语:Benzylpenicillin),也称青霉素G(penicillin G),是一种窄谱青霉素类抗生素,用于静脉注射或肌肉注射治疗儿童的各种细菌感染。通常直接用青霉素指苄青霉素。苄青霉素被
- 结晶性关节病变结晶性关节病变是一种关节疾病(关节变病),特征是微小晶体沉积在一个或多个关节中。应用偏光显微镜(英语:Polarized light microscopy)和其他晶体学技术协助鉴定各种不同的微晶,包括
- 碘苷碘苷(INN:idoxuridine)是一种主要用于角膜炎的抗疱疹病毒科抗病毒药物。碘苷与脱氧尿苷的结构非常类似,可以在病毒DNA复制的过程中被使用,碘苷当中的碘原子妨碍了碱基对的生成,从
- 踝肱指数踝肱指数,又称为踝肱血压指数(Ankle Brachial Pressure Index,ABPI或ABI),是小腿相对于上臂的血压比值。如果小腿血压比上臂低,提示可能有动脉阻塞(周围血管疾病)。ABI是由用脚踝动
- 膀胱输尿管返流膀胱输尿管返流(Vesicoureteral Reflux、VUR)是尿从膀胱到输尿管或肾的异常地反向性地流动。尿液的正常运行是从肾脏进经由输尿管到膀胱。出生前胎儿的膀胱输尿管反流的症状
- 咽喉炎咽喉痛(sore throat、throat pain,又称喉咙痛或喉痛),是指咽喉出现痛楚的症状,最主要的成因是咽喉炎(喉咙发炎),但可由其他原因引致,例如白喉和伤风感冒威胁。 服用非类固醇消炎止痛
- 国际电信联盟国际电信联盟(法语:Union Internationale des Télécommunications,简称 UIT; 英语:International Telecommunication Union,简称 ITU)是一个国际组织,主要负责确立国际无线电和电
- 骨科骨科即骨外科,也被称为矫形外科(英语:Orthopedic surgery 或 Orthopaedics,美式英文:Orthopedics)是使用手术和非手术的方法来治疗肌肉骨骼系统创伤、脊柱损伤、运动损伤、退行性
- 核燃料循环核燃料循环(英语:Nuclear fuel cycle),也被称为核燃料链,指的是核燃料经过在使用过程中所经过的一系列不同的阶段。它主要包括前端步骤,其中有制造核燃料的过程、使用期间的各个