学生it检验

✍ dations ◷ 2025-02-23 07:16:06 #学生<i>t</i>检验
学生t检验(英语:Student's t-test)是指虚无假设成立时的任一检定统计有学生t-分布的统计假说检定,属于母数统计。学生t检验常作为检验一群来自正态分配总体的独立样本之期望值的是否为某一实数,或是二(两)群来自正态分配总体的独立样本之期望值的差是否为某一实数。举个简单的例子,也就是说我们可以在抓取一个班级的男生,去比较该班与全校男生之身高差异程度是不是推测的那样,或是不同年级班上的男生身高的差异的场合是否一如预期使用此检验法。学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生”则是他的笔名。 基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈斯特受雇于都柏林的健力士酿酒厂担任统计学家。戈斯特提出了t检验以降低啤酒质量监控的成本。戈斯特于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈斯特真实身份的。今日,它更常被应用于小样本判断的置信度。最常用t检验的情况有:大多数的t检定之统计量具有t = Z/k的形式,其中Z与k是已知资料的函数。Z通常被设计成对于对立假说有关的形式,而k是一个尺度参数使t服从于t分布。以单样本t检验为例, Z = X ¯ / ( σ / n ) {displaystyle Z={bar {X}}/(sigma /{sqrt {n}})} ,其中 X ¯ {displaystyle {bar {X}}} 为样本平均数, n {displaystyle n} 为样本数, σ {displaystyle sigma } 为总体标准差。至于k在单样本t检验中为 σ ^ / σ {displaystyle {hat {sigma }}/sigma } ,其中 σ ^ {displaystyle {hat {sigma }}} 为样本的标准偏差。在符合零假说的条件下,t检定有以下前提:检验零假说为一群来自正态分配独立样本xi之总体期望值μ为μ0可利用以下统计量其中 i = 1 … n {displaystyle i=1ldots n} , x ¯ = ∑ i = 1 n x i n {displaystyle {overline {x}}={frac {sum _{i=1}^{n}x_{i}}{n}}} 为样本平均数, s = ∑ i = 1 n ( x i − x ¯ ) 2 n − 1 {displaystyle s={sqrt {frac {sum _{i=1}^{n}(x_{i}-{overline {x}})^{2}}{n-1}}}} 为样本标准偏差,n为样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。配对样本t检验可视为单样本t检验的扩展,不过检验的对象由一群来自正态分配独立样本更改为二群配对样本之观测值之差。若二群配对样本x1i与x2i之差为di = x1i − x2i独立且来自正态分配,则di之总体期望值μ是否为μ0可利用以下统计量其中 i = 1 … n {displaystyle i=1ldots n} , d ¯ = ∑ i = 1 n d i n {displaystyle {overline {d}}={frac {sum _{i=1}^{n}d_{i}}{n}}} 为配对样本差值之平均数, s d = ∑ i = 1 n ( d i − d ¯ ) 2 n − 1 {displaystyle s_{d}={sqrt {frac {sum _{i=1}^{n}(d_{i}-{overline {d}})^{2}}{n-1}}}} 为配对样本差值之标准偏差,n为配对样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。若二群独立样本x1i与x2i具有相同之样本数n,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值差μ1 - μ2是否为μ0可利用以下统计量其中 i = 1 … n {displaystyle i=1ldots n} , x ¯ 1 = ( ∑ i = 1 n x 1 i ) / n {displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n} 及 x ¯ 2 = ( ∑ i = 1 n x 2 i ) / n {displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n} 为二群样本各自的平均数, s p 2 = ( ∑ i = 1 n ( x 1 i − x ¯ 1 ) 2 + ∑ i = 1 n ( x 2 i − x ¯ 2 ) 2 ) / ( 2 n − 2 ) {displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{i=1}^{n}(x_{2i}-{overline {x}}_{2})^{2})/(2n-2)} 为样本之共同方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为2n − 2的t分布。若二群独立样本x1i与x2j具有不相同之样本数n1与n2,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中 i = 1 … n 1 {displaystyle i=1ldots n_{1}} ,其中 j = 1 … n 2 {displaystyle j=1ldots n_{2}} , x ¯ 1 = ( ∑ i = 1 n x 1 i ) / n {displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n} 及 x ¯ 2 = ( ∑ i = 1 n x 2 i ) / n {displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n} 为二群样本各自的平均数, s p 2 = ( ∑ i = 1 n ( x 1 i − x ¯ 1 ) 2 + ∑ j = 1 n ( x 2 j − x ¯ 2 ) 2 ) / ( n 1 + n 2 − 2 ) {displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{1}+n_{2}-2)} 为二群样本共同之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为n1 + n2 − 2的t分布。若二群独立样本x1i与x2j具有相等或不相同之样本数n1与n2,并且彼此独立及来自二个方差不相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中 i = 1 … n 1 {displaystyle i=1ldots n_{1}} ,其中 j = 1 … n 2 {displaystyle j=1ldots n_{2}} , x ¯ 1 = ( ∑ i = 1 n 1 x 1 i ) / n 1 {displaystyle {overline {x}}_{1}=(sum _{i=1}^{n_{1}}x_{1i})/n_{1}} 及 x ¯ 2 = ( ∑ j = 1 n 2 x 2 j ) / n {displaystyle {overline {x}}_{2}=(sum _{j=1}^{n_{2}}x_{2j})/n} 为二群样本各自的平均数, s 1 2 = ( ∑ i = 1 n ( x 1 i − x ¯ 1 ) 2 ) / ( n 1 − 1 ) {displaystyle s_{1}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2})/(n_{1}-1)} 及 s 2 2 = ( ∑ j = 1 n ( x 2 j − x ¯ 2 ) 2 ) / ( n 2 − 1 ) {displaystyle s_{2}^{2}=(sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{2}-1)} 分别为二群样本之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为之t分布。这种方法又常称为Welch检验。在简单线性回归的模型其中xi,i = 1, ..., n为已知,α与β为未知系数,εi为残差独立且服从期望值0且方差σ2未知的正态分布,yi,i = 1, ..., n为观测值。我们可以检验回归系数(在此例即为回归式之斜率)β是否相等于特定的β0(通常使β0 = 0以检验xi对yi是否有关联)。令 α ^ {displaystyle {widehat {alpha }}} 与 β ^ {displaystyle {widehat {beta }}} 为最小二乘法之估计值, S E α ^ {displaystyle SE_{widehat {alpha }}} 与 S E β ^ {displaystyle SE_{widehat {beta }}} 为最小二乘法估计值之标准误差,则在零假设为β = β0的情况下服从自由度为n − 2之t分布,其中由于 ε ^ i = y i − y ^ i = y i − ( α ^ + β ^ x i ) {displaystyle {widehat {varepsilon }}_{i}=y_{i}-{widehat {y}}_{i}=y_{i}-({widehat {alpha }}+{widehat {beta }}x_{i})} 为残差(即估计误差),而 SSR = ∑ i = 1 n ε ^ i 2 {displaystyle {text{SSR}}=sum _{i=1}^{n}{widehat {varepsilon }}_{i}^{;2}} 为残差之离均平方和,我们可改写t为另请参阅:方差齐性检验(F检验)大多数的试算表软件及统计软件,诸如QtiPlot、OpenOffice.org Calc、LibreOffice Calc、Microsoft Excel、SAS、SPSS、Stata、DAP、gretl、R、Python ()、PSPP、Minitab等,都可以进行t检验之运算。

相关

  • 衰老人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学在生物学及医学上,老化是生理状态随时
  • 巴巴拉·麦克林托克芭芭拉·麦克林托克(英语:Barbara McClintock,1902年6月16日-1992年9月2日),美国著名女性细胞遗传学家。1983年获得诺贝尔生理学或医学奖,是首位没有共同得奖者、单独获得该奖项的
  • 头孢洛林头孢洛林 (国际非专利药品名) (发音为/sɛfˈtærɵliːn/, 商品名Teflaro)是一种第五代头孢菌素类抗生素。它对于包括耐甲氧西林金黄色葡萄球菌(MRSA)在内的革兰氏阳性菌具
  • 酶联免疫吸附法酶联免疫吸附试验(又称酵素免疫分析法,Enzyme-linked immunosorbent assay (ELISA),简称酶联法)利用抗原抗体之间专一性键结之特性,对检体进行检测;由于结合于固体承载物(一般为塑
  • 模式生物模式生物(英语:model organism)是指受到广泛研究,对其生物现象有深入了解的物种。根据从这些物种所得的科学研究结果,可以归纳出一些涵盖许多生物的模型,并应用在各领域的研究。利
  • 认知行为疗法认知行为治疗(英语:Cognitive Behavioral Therapy,简称 CBT)是一种心理治疗的取向、一种谈话治疗,以目标导向与系统化的程序,解决丧失功能的情绪、行为与认知问题。不同的治疗方式
  • 一氧化碳carbonous oxide carbon(II) oxide一氧化碳,分子式为CO,是无色、无臭、无味的无机化合物气体,比空气略轻。在水中的溶解度甚低,但易溶于氨水。空气混合爆炸极限为12.5%~74%。 一
  • 无菌性脑膜炎脑膜炎(英语:meningitis)指发生于脑膜的急性炎症,脑膜是包裹大脑和脊髓的保护薄膜。脑膜炎最常见的症状是发热、头痛和颈部僵硬。其他症状还包含精神错乱(英语:mental confusion)或
  • 重商主义重商主义(英语:mercantilism)是在16世纪到18世纪之间盛行的经济理论、经济政策。重商主义是民族主义在经济上的一种形式。它的目标是最大限度的使国家富足与强盛,借由获取并留下
  • 生命生命泛指一类具有稳定的物质和能量代谢现象并且能回应刺激、能进行自我复制(繁殖)的半开放物质系统。简单来说,也就是具有生命机制的物体。生命个体一定会经历出生、成长、衰老