首页 >
学生it检验
✍ dations ◷ 2025-01-22 21:43:13 #学生<i>t</i>检验
学生t检验(英语:Student's t-test)是指虚无假设成立时的任一检定统计有学生t-分布的统计假说检定,属于母数统计。学生t检验常作为检验一群来自正态分配总体的独立样本之期望值的是否为某一实数,或是二(两)群来自正态分配总体的独立样本之期望值的差是否为某一实数。举个简单的例子,也就是说我们可以在抓取一个班级的男生,去比较该班与全校男生之身高差异程度是不是推测的那样,或是不同年级班上的男生身高的差异的场合是否一如预期使用此检验法。学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生”则是他的笔名。
基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈斯特受雇于都柏林的健力士酿酒厂担任统计学家。戈斯特提出了t检验以降低啤酒质量监控的成本。戈斯特于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈斯特真实身份的。今日,它更常被应用于小样本判断的置信度。最常用t检验的情况有:大多数的t检定之统计量具有t = Z/k的形式,其中Z与k是已知资料的函数。Z通常被设计成对于对立假说有关的形式,而k是一个尺度参数使t服从于t分布。以单样本t检验为例,
Z
=
X
¯
/
(
σ
/
n
)
{displaystyle Z={bar {X}}/(sigma /{sqrt {n}})}
,其中
X
¯
{displaystyle {bar {X}}}
为样本平均数,
n
{displaystyle n}
为样本数,
σ
{displaystyle sigma }
为总体标准差。至于k在单样本t检验中为
σ
^
/
σ
{displaystyle {hat {sigma }}/sigma }
,其中
σ
^
{displaystyle {hat {sigma }}}
为样本的标准偏差。在符合零假说的条件下,t检定有以下前提:检验零假说为一群来自正态分配独立样本xi之总体期望值μ为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
x
¯
=
∑
i
=
1
n
x
i
n
{displaystyle {overline {x}}={frac {sum _{i=1}^{n}x_{i}}{n}}}
为样本平均数,
s
=
∑
i
=
1
n
(
x
i
−
x
¯
)
2
n
−
1
{displaystyle s={sqrt {frac {sum _{i=1}^{n}(x_{i}-{overline {x}})^{2}}{n-1}}}}
为样本标准偏差,n为样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。配对样本t检验可视为单样本t检验的扩展,不过检验的对象由一群来自正态分配独立样本更改为二群配对样本之观测值之差。若二群配对样本x1i与x2i之差为di = x1i − x2i独立且来自正态分配,则di之总体期望值μ是否为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
d
¯
=
∑
i
=
1
n
d
i
n
{displaystyle {overline {d}}={frac {sum _{i=1}^{n}d_{i}}{n}}}
为配对样本差值之平均数,
s
d
=
∑
i
=
1
n
(
d
i
−
d
¯
)
2
n
−
1
{displaystyle s_{d}={sqrt {frac {sum _{i=1}^{n}(d_{i}-{overline {d}})^{2}}{n-1}}}}
为配对样本差值之标准偏差,n为配对样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。若二群独立样本x1i与x2i具有相同之样本数n,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
x
¯
1
=
(
∑
i
=
1
n
x
1
i
)
/
n
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n}
及
x
¯
2
=
(
∑
i
=
1
n
x
2
i
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n}
为二群样本各自的平均数,
s
p
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
+
∑
i
=
1
n
(
x
2
i
−
x
¯
2
)
2
)
/
(
2
n
−
2
)
{displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{i=1}^{n}(x_{2i}-{overline {x}}_{2})^{2})/(2n-2)}
为样本之共同方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为2n − 2的t分布。若二群独立样本x1i与x2j具有不相同之样本数n1与n2,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
1
{displaystyle i=1ldots n_{1}}
,其中
j
=
1
…
n
2
{displaystyle j=1ldots n_{2}}
,
x
¯
1
=
(
∑
i
=
1
n
x
1
i
)
/
n
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n}
及
x
¯
2
=
(
∑
i
=
1
n
x
2
i
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n}
为二群样本各自的平均数,
s
p
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
+
∑
j
=
1
n
(
x
2
j
−
x
¯
2
)
2
)
/
(
n
1
+
n
2
−
2
)
{displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{1}+n_{2}-2)}
为二群样本共同之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为n1 + n2 − 2的t分布。若二群独立样本x1i与x2j具有相等或不相同之样本数n1与n2,并且彼此独立及来自二个方差不相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
1
{displaystyle i=1ldots n_{1}}
,其中
j
=
1
…
n
2
{displaystyle j=1ldots n_{2}}
,
x
¯
1
=
(
∑
i
=
1
n
1
x
1
i
)
/
n
1
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n_{1}}x_{1i})/n_{1}}
及
x
¯
2
=
(
∑
j
=
1
n
2
x
2
j
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{j=1}^{n_{2}}x_{2j})/n}
为二群样本各自的平均数,
s
1
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
)
/
(
n
1
−
1
)
{displaystyle s_{1}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2})/(n_{1}-1)}
及
s
2
2
=
(
∑
j
=
1
n
(
x
2
j
−
x
¯
2
)
2
)
/
(
n
2
−
1
)
{displaystyle s_{2}^{2}=(sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{2}-1)}
分别为二群样本之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为之t分布。这种方法又常称为Welch检验。在简单线性回归的模型其中xi,i = 1, ..., n为已知,α与β为未知系数,εi为残差独立且服从期望值0且方差σ2未知的正态分布,yi,i = 1, ..., n为观测值。我们可以检验回归系数(在此例即为回归式之斜率)β是否相等于特定的β0(通常使β0 = 0以检验xi对yi是否有关联)。令
α
^
{displaystyle {widehat {alpha }}}
与
β
^
{displaystyle {widehat {beta }}}
为最小二乘法之估计值,
S
E
α
^
{displaystyle SE_{widehat {alpha }}}
与
S
E
β
^
{displaystyle SE_{widehat {beta }}}
为最小二乘法估计值之标准误差,则在零假设为β = β0的情况下服从自由度为n − 2之t分布,其中由于
ε
^
i
=
y
i
−
y
^
i
=
y
i
−
(
α
^
+
β
^
x
i
)
{displaystyle {widehat {varepsilon }}_{i}=y_{i}-{widehat {y}}_{i}=y_{i}-({widehat {alpha }}+{widehat {beta }}x_{i})}
为残差(即估计误差),而
SSR
=
∑
i
=
1
n
ε
^
i
2
{displaystyle {text{SSR}}=sum _{i=1}^{n}{widehat {varepsilon }}_{i}^{;2}}
为残差之离均平方和,我们可改写t为另请参阅:方差齐性检验(F检验)大多数的试算表软件及统计软件,诸如QtiPlot、OpenOffice.org Calc、LibreOffice Calc、Microsoft Excel、SAS、SPSS、Stata、DAP、gretl、R、Python ()、PSPP、Minitab等,都可以进行t检验之运算。
相关
- 电子显微镜电子显微镜(英语:electron microscope,简称电镜或电显)是使用电子来展示物件的内部或表面的显微镜。高速的电子的波长比可见光的波长短(波粒二象性),而显微镜的分辨率受其使用的波
- 转录转录(英语:Transcription)是在RNA聚合酶的催化下,遗传信息由DNA复制到RNA(尤其是mRNA)的过程。作为蛋白质生物合成的第一步,转录是合成mRNA以及非编码RNA(tRNA、rRNA等)的途径。真核
- 脐带绕颈脐带绕颈(nuchal cord)是指胎儿在母体子宫内时,发生脐带缠绕在胎儿颈部的情形。脐带绕颈的胎儿出生后,可能很快就会出现脸色发黑、面部瘀青及眼白布有血丝(英语:subconjunctival b
- E00-E90ICD-10 第四章:内分泌、营养和代谢疾病,为WHO规定的已发现的各类内分泌,营养和代谢疾病。甲状腺疾患 (E00-E07)糖尿病 (E10-E14)其他葡萄糖调节和胰腺内分泌的疾患 (E15-E16)其他内分
- 替诺福韦替诺福韦二吡呋酯(英语:Tenofovir disoproxil),商品名韦瑞德(英语:Viread)惠立妥或其它,是一种用于治疗慢性乙肝以及预防和治疗HIV感染/艾滋病的药物。这种药物属于逆转录酶抑制剂,可
- M+-6-[(2R,3S,4R,5R,6R) -4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxane -3,4,5-triol麦芽糖(英语:Maltose)又名胶饴,其色紫凝如深琥珀色,色白而枯者,为饧糖不入药用。 是
- 血液脂类血脂是指血液里脂肪含量,通常包括胆固醇(Cholesterol)与三酸甘油酯(Triacylglycerol),又称为“血胆固醇”(blood cholesterol)。其量度单位为mg/dL。胆固醇又分为高密度、低密度、非
- 加速度加速度是物理学中的一个物理量,是一个矢量,主要应用于经典物理当中,一般用字母 a {\displaystyle \mathbf {a} }
- 安德鲁·斯丁普森安德鲁·斯廷普森(英语:Andrew Stimpson,1980年-),英国苏格兰出生,他是被确认感染人类免疫缺陷病毒十七个月后,测试结果呈阴性反应的英国男子。虽然过往在非洲曾经有受感染者成功击
- 泡沫细胞泡沫细胞是一种含有大量脂肪的巨噬细胞。泡沫细胞是导致动脉硬化的一种原因,并可能导致心脏病和脑梗塞。当低密度脂蛋白穿过动脉内膜进入血管壁之间时,胆固醇会在那里堆积。当