微分几何中,黎曼几何(英语:Riemannian geometry)研究具有黎曼度量的光滑流形,即流形切空间上二次形式的选择。它特别关注于角度、弧线长度及体积。把每个微小部分加起来而得出整体的数量。
19世纪,波恩哈德·黎曼把这个概念加以推广。
任意平滑流形容许黎曼度量及这个额外结构帮助解决微分拓扑问题。它成为伪黎曼流形复杂结构的入门。其中大部分都是广义相对论的四维研究对象。
黎曼几何与以下主题有关:
参看:
下面给出部分的黎曼几何古典理论。
所有给出的定理中,都将用用空间的局部行为(通常用曲率假设表述)来推出空间的整体结构的一些信息,包括流形的拓扑类型和"足够大"距离的点间的关系。