容斥原理

✍ dations ◷ 2025-09-19 00:17:00 #组合数学,集合论,数学定理,概率论

容斥原理又称排容原理,在组合数学里,其说明若 A 1 {\displaystyle A_{1}} 1,……,,当 = 2时容斥原理的公式为:

当 = 3时,公式为:

一般地:

也可以写成:

对于一般的测度空间(,,)和有限测度的可测子集1,……,,上面的恒等式也成立,如果把概率测度 P {\displaystyle \mathbb {P} }

如果在容斥原理的概率形式中,交集的概率只与中元素的个数有关,也就是说,对于{1, ..., }中的每一个,都存在一个,使得:

则以上的公式可以简化为:

这是由于二项式系数 ( n k ) {\displaystyle \scriptstyle {\binom {n}{k}}} 1,……,的并集的元素个数感兴趣,且对于{1, ..., }中的每一个,交集

的元素个数都相同,例如 = ||,与{1, ..., }的元素子集无关,则:

在一般的测度空间(,,)和有限测度的可测子集1,……,的情况中,也可以进行类似的简化。

欲证明容斥原理,我们首先要验证以下的关于指示函数的等式:

至少有两种方法来证明这个等式:

第一种方法 我们只需证明对于1,……,的并集中的每一个,等式都成立。假设正好属于个集合(1 ≤  ≤ ),不妨设它们为1,……,。则处的等式化为:

元素集合中的元素子集的个数,是二项式系数 ( m k ) {\displaystyle \textstyle {\binom {m}{k}}} 的二项式展开式,因此可以看出,(*)对成立。

第二种方法 设表示集合1,……,的并集。于是:

这是因为对于不在内的,两边都等于零,而如果属于其中一个集合,例如,则对应的第个因子为零。把右端的乘积展开来,便可得到等式(*)。

设:S1= n (A1)+n (A2)+n (A3) +…...+n (An)

S2= n(A1∩A2)+ n(A1∩A3) …...+ n(A1∩An)+ n(A2∩A3)+ …...+n(An-1∩An)

S3= n(A1∩A2∩A3)+ ……+ n(An-2∩An-1∩An)……

Sn =n(A1∩A2∩A3∩……∩An)

求证:A=n(A1∪A2∪A3∪A4……∪An)= S1-S2+ S3+……+(-1)n-1Sn

证明:当n=2时,A=n(A1∪A2)=n(A1)+n(A2) -n(A1∩ A2)= S1-S2

假设:当n=k(k>=2)时,A=n (A1∪A2∪A3∪A4……∪Ak)= S1-S2+ S3+……+(-1)k-1Sk 等式成立。

当n=k+1时,

A= n( (A1∪A2∪A3∪A4……∪Ak) ∪Ak+1)

= n (A1∪A2∪A3∪A4……∪Ak)+n(Ak+1)-n((A1∪A2∪A3∪A4……∪Ak) ∩Ak+1)

= n (A1∪A2∪A3∪A4……∪Ak) +n(Ak+1)-n((A1∩Ak+1) ∪(A2∩Ak+1) ∪(A3∩Ak+1) ∪ …∪(Ak∩Ak+1))

∵ 当n=k时,等式成立

∴A= n (A1∪A2∪A3∪A4……∪Ak) +n(Ak+1)-(n (A1∩Ak+1)+ n (A2∩Ak+1)+ ……+n(Ak∩Ak+1)-n(A1∩A2∩Ak+1)-n(A1A3∩Ak+1) -……- n(Ak-1∩Ak∩Ak+1)+ ……+(-1)k.n(A1∩A2∩A3∩∪……∩Ak+1)

   = S1-S2+ S3+……+(-1)k-1Sk+n(Ak+1)-(n (A1∩Ak+1)+ n (A2∩Ak+1)+ ……+n(Ak∩Ak+1)-n(A1∩A2∩Ak+1)-n(A1∩A3∩Ak+1) -……- n(Ak-1∩Ak∩Ak+1)+ ……+(-1)k.n(A1∩A2∩A3∩∪……∩Ak+1)

    = S1-S2+ S3+……+(-1)kSk+1

综上所述,当n>=2时,n (A1∪A2∪A3∪A4……∪An)

= n (A1)+n (A2)+n (A3) ……+ n (An)-n(A1∩A2)- n(A1∩A3) ……- n(A1∩An)- n(A2∩A3)- ……-n(An-1∩An)+n(A1∩A2∩A3)+ n(A1∩A2∩A3)+ ……+ n(An-2∩An-1∩An)- ……+……+(-1)n-1.n(A1∩A2∩A3∩……∩An)

有时容斥原理用以下的形式来表述:如果

那么:

在这种形式中可以看出,它是的所有子集的偏序集合的指标代数的莫比乌斯反演公式。

在许多情况下,容斥原理都可以给出精确的公式(特别是用埃拉托斯特尼筛法计算素数的个数时),但是用处不大,这是因为它里面含有的项太多。即使每一个单独的项都可以准确地估计,误差累积起来仍然意味着容斥原理不能直接应用。在数论中,这个困难由维戈·布朗解决。开始时进展很慢,但他的想法逐渐被其他数学家所应用,于是便产生了许多各种各样的筛法。这些方法是尝试找出被“筛选”的集合的上界,而不是一个确切的公式。

容斥原理的一个著名的应用,是计算一个有限集合的所有乱序排列的数目。一个集合的,是从到的没有不动点的双射。通过容斥原理,我们可以证明,如果含有个元素,则乱序排列的数目为,其中表示最接近的整数。

这也称为的子阶乘,记为!。可以推出,如果所有的双射都有相同的概率,则当增大时,一个随机双射是错排的概率迅速趋近于1/。

容斥原理与德·摩根定理结合起来,也可以用于计算集合的交集中元素的数目。设 A ¯ k {\displaystyle \scriptstyle {\overline {A}}_{k}} 关于全集的补集,使得对于每一个,都有 A k A {\displaystyle \scriptstyle A_{k}\,\subseteq \,A} ]

http://blog.sina.com.cn/s/blog_6be9596c0100miag.html

http://e-maxx.ru/algo/inclusion_exclusion_principle(俄文) 中文翻译:http://www.cppblog.com/vici/archive/2011/09/05/155103.html

本条目含有来自PlanetMath《principle of inclusion-exclusion》的内容,版权遵守知识共享协议:署名-相同方式共享协议。

相关

  • 奥勒留马可·奥勒留(拉丁语:Marcus Aurelius,121年4月26日-180年3月17日),全名为马可·奥勒留·安敦宁·奥古斯都(拉丁语:Marcus Aurelius Antoninus Augustus)。是罗马帝国五贤帝时代最后
  • 方形神殿方形神殿(法语:Maison Carrée)是位于法国南部尼姆的一座古代建筑,是保存状态最为良好的古罗马时期神殿建筑之一。方形神殿建设于公元前16年。4世纪后,这里成为基督教的教堂。182
  • 楚国楚国,又称荆国、荆楚,周朝诸侯国。楚国是春秋战国时期的强国,楚庄王是春秋五霸之一,楚国后来亦是战国七雄之一。楚国国君芈姓熊氏,最早兴起于丹江流域的丹水和淅水交汇的淅川一带
  • 萨南达季萨南达季(波斯语:سنندج‎)又称锡内(库尔德语:سنه‎‎,拉丁化:Sine),是伊朗伊斯兰共和国库尔德斯坦省的省会和最大城市,也是同名县和地区的行政中心,距首都德黑兰以西512公里。
  • 段成式段成式(803年?-863年),字柯古,唐代博物学家、诗人、官员。邹平(今属山东滨州)人。后随父徙宜城。世家子弟,遍览群书,善于佛学。官至太常少卿。段成式善于诗歌骈文,与李商隐、温庭筠齐名
  • 止气阀膜止气阀膜是一种装置在一封闭塑胶薄膜内,能与外界通气但能阻止空气回流的装置。两片薄膜合起来,其中一片薄膜的一面印有耐热油墨,此面面向另一片薄膜合起来。将合起来的两片薄膜
  • 钟国楚钟国楚(1912年11月-1996年4月30日),男,江西兴国人,中国人民解放军将领、中国人民解放军开国少将。钟国楚是江西省兴国县埠头乡人。1930年加入中国共产党。曾任中国人民志愿军23军
  • 黏盲鳗黏盲鳗亚科(Eptatretinae)是盲鳗科下的一个亚科。属于盲鳗纲盲鳗科,另有一平行的盲鳗亚科(Myxininae(葡萄牙语:Myxininae))。目前黏盲鳗亚科有两个属,分别是粘盲鳗属(Eptatretus(英语:Ep
  • EdmodoEdmodo 是一家教育技术公司,为 K-12学校和教师提供一个交流、合作和辅导的平台。 Edmodo 网络平台使教师能够分享内容,分发测验,作业,并与学生,同事和家长的沟通。 Edmodo 在设计
  • 科隆纳家族那不勒斯王国 两西西里王国 意大利王国 意大利 科隆纳家族(意大利语:Colonna)或译科隆那、柯隆那,是一个意大利贵族家族,在中古世纪和意大利文艺复兴时期的罗马拥有强大的势力,该