容斥原理

✍ dations ◷ 2025-06-11 11:31:56 #组合数学,集合论,数学定理,概率论

容斥原理又称排容原理,在组合数学里,其说明若 A 1 {\displaystyle A_{1}} 1,……,,当 = 2时容斥原理的公式为:

当 = 3时,公式为:

一般地:

也可以写成:

对于一般的测度空间(,,)和有限测度的可测子集1,……,,上面的恒等式也成立,如果把概率测度 P {\displaystyle \mathbb {P} }

如果在容斥原理的概率形式中,交集的概率只与中元素的个数有关,也就是说,对于{1, ..., }中的每一个,都存在一个,使得:

则以上的公式可以简化为:

这是由于二项式系数 ( n k ) {\displaystyle \scriptstyle {\binom {n}{k}}} 1,……,的并集的元素个数感兴趣,且对于{1, ..., }中的每一个,交集

的元素个数都相同,例如 = ||,与{1, ..., }的元素子集无关,则:

在一般的测度空间(,,)和有限测度的可测子集1,……,的情况中,也可以进行类似的简化。

欲证明容斥原理,我们首先要验证以下的关于指示函数的等式:

至少有两种方法来证明这个等式:

第一种方法 我们只需证明对于1,……,的并集中的每一个,等式都成立。假设正好属于个集合(1 ≤  ≤ ),不妨设它们为1,……,。则处的等式化为:

元素集合中的元素子集的个数,是二项式系数 ( m k ) {\displaystyle \textstyle {\binom {m}{k}}} 的二项式展开式,因此可以看出,(*)对成立。

第二种方法 设表示集合1,……,的并集。于是:

这是因为对于不在内的,两边都等于零,而如果属于其中一个集合,例如,则对应的第个因子为零。把右端的乘积展开来,便可得到等式(*)。

设:S1= n (A1)+n (A2)+n (A3) +…...+n (An)

S2= n(A1∩A2)+ n(A1∩A3) …...+ n(A1∩An)+ n(A2∩A3)+ …...+n(An-1∩An)

S3= n(A1∩A2∩A3)+ ……+ n(An-2∩An-1∩An)……

Sn =n(A1∩A2∩A3∩……∩An)

求证:A=n(A1∪A2∪A3∪A4……∪An)= S1-S2+ S3+……+(-1)n-1Sn

证明:当n=2时,A=n(A1∪A2)=n(A1)+n(A2) -n(A1∩ A2)= S1-S2

假设:当n=k(k>=2)时,A=n (A1∪A2∪A3∪A4……∪Ak)= S1-S2+ S3+……+(-1)k-1Sk 等式成立。

当n=k+1时,

A= n( (A1∪A2∪A3∪A4……∪Ak) ∪Ak+1)

= n (A1∪A2∪A3∪A4……∪Ak)+n(Ak+1)-n((A1∪A2∪A3∪A4……∪Ak) ∩Ak+1)

= n (A1∪A2∪A3∪A4……∪Ak) +n(Ak+1)-n((A1∩Ak+1) ∪(A2∩Ak+1) ∪(A3∩Ak+1) ∪ …∪(Ak∩Ak+1))

∵ 当n=k时,等式成立

∴A= n (A1∪A2∪A3∪A4……∪Ak) +n(Ak+1)-(n (A1∩Ak+1)+ n (A2∩Ak+1)+ ……+n(Ak∩Ak+1)-n(A1∩A2∩Ak+1)-n(A1A3∩Ak+1) -……- n(Ak-1∩Ak∩Ak+1)+ ……+(-1)k.n(A1∩A2∩A3∩∪……∩Ak+1)

   = S1-S2+ S3+……+(-1)k-1Sk+n(Ak+1)-(n (A1∩Ak+1)+ n (A2∩Ak+1)+ ……+n(Ak∩Ak+1)-n(A1∩A2∩Ak+1)-n(A1∩A3∩Ak+1) -……- n(Ak-1∩Ak∩Ak+1)+ ……+(-1)k.n(A1∩A2∩A3∩∪……∩Ak+1)

    = S1-S2+ S3+……+(-1)kSk+1

综上所述,当n>=2时,n (A1∪A2∪A3∪A4……∪An)

= n (A1)+n (A2)+n (A3) ……+ n (An)-n(A1∩A2)- n(A1∩A3) ……- n(A1∩An)- n(A2∩A3)- ……-n(An-1∩An)+n(A1∩A2∩A3)+ n(A1∩A2∩A3)+ ……+ n(An-2∩An-1∩An)- ……+……+(-1)n-1.n(A1∩A2∩A3∩……∩An)

有时容斥原理用以下的形式来表述:如果

那么:

在这种形式中可以看出,它是的所有子集的偏序集合的指标代数的莫比乌斯反演公式。

在许多情况下,容斥原理都可以给出精确的公式(特别是用埃拉托斯特尼筛法计算素数的个数时),但是用处不大,这是因为它里面含有的项太多。即使每一个单独的项都可以准确地估计,误差累积起来仍然意味着容斥原理不能直接应用。在数论中,这个困难由维戈·布朗解决。开始时进展很慢,但他的想法逐渐被其他数学家所应用,于是便产生了许多各种各样的筛法。这些方法是尝试找出被“筛选”的集合的上界,而不是一个确切的公式。

容斥原理的一个著名的应用,是计算一个有限集合的所有乱序排列的数目。一个集合的,是从到的没有不动点的双射。通过容斥原理,我们可以证明,如果含有个元素,则乱序排列的数目为,其中表示最接近的整数。

这也称为的子阶乘,记为!。可以推出,如果所有的双射都有相同的概率,则当增大时,一个随机双射是错排的概率迅速趋近于1/。

容斥原理与德·摩根定理结合起来,也可以用于计算集合的交集中元素的数目。设 A ¯ k {\displaystyle \scriptstyle {\overline {A}}_{k}} 关于全集的补集,使得对于每一个,都有 A k A {\displaystyle \scriptstyle A_{k}\,\subseteq \,A} ]

http://blog.sina.com.cn/s/blog_6be9596c0100miag.html

http://e-maxx.ru/algo/inclusion_exclusion_principle(俄文) 中文翻译:http://www.cppblog.com/vici/archive/2011/09/05/155103.html

本条目含有来自PlanetMath《principle of inclusion-exclusion》的内容,版权遵守知识共享协议:署名-相同方式共享协议。

相关

  • Β-内酰胺类抗生素β-内酰胺类抗生素(Beta-lactam antibiotic)是一种种类很广的抗生素,其中包括青霉素及其衍生物、头孢菌素、单酰胺环类(英语:monobactam)、碳青霉烯和青霉烯类酶抑制剂等。基本上
  • 亚拉巴马截至2010年亚拉巴马州(英语:Alabama,i/ˌæləˈbæmə/,又译作阿拉巴马州)是美国东南部地区一个联邦州。北接田纳西州,东邻乔治亞州,南至佛罗里达州和墨西哥湾,西临密西西比州。亚
  • 2016年欧洲杯足球赛2016年欧洲足球锦标赛(英语:2016 UEFA European Championship),通称2016年欧洲杯(UEFA Euro 2016,英文简称Euro 2016),是第 15 届四年一度的欧洲足球锦标赛,由欧洲足联组织。比赛于20
  • 埃及苏丹国埃及苏丹国 (阿拉伯语:السلطنة المصرية‎),是1914年至1922年间英国于埃及所建立的一个短命保护国名称。
  • 恭亲王和硕恭亲王(满语:ᡥᠣᡧᠣᡳᡤᡠᠩᠨᡝᠴᡠᡴᡝ ᠴᡳᠨ ᠸᠠᠩ,穆麟德:Hošoi gungnecuke cin wang,太清:Hoxoi gungnequke qin wang),是清朝亲王,前后共有两个互无关系的系统。一是
  • 哥伦比亚比索哥伦比亚比索是哥伦比亚正在流通使用的货币。ISO 4217号码为COP,简写为COL$。常见硬币面值 50,100,200,500,1000 比索新版有 2000,5000,10000,20000,50000 及 100000 比索
  • 若列斯·伊万诺维奇·阿尔费罗夫京都奖尖端科技奖 (2001) 诺贝尔物理学奖 (2000)若列斯·伊万诺维奇·阿尔费罗夫(俄语:Жоре́с Ива́нович Алфёров,1930年3月15日-2019年3月1日),俄罗斯物理
  • 浊会厌颤音浊会厌颤音(voiced epiglottal trill)是辅音的一种,用于一些语言当中。普通话中无此音。国际音标以⟨ʢ⟩代表此音,X-SAMPA音标以⟨<\⟩代表此音。浊会厌颤音的特征:当符号成对出
  • 黄豆粉黄豆粉是大豆炒后去皮、磨制而成的粉末。黄豆粉是驴打滚的原料之一。豆粉含有大量的蛋白质。此外,大豆含有的寡糖(oligo)可以帮助增加益生菌、含有大量膳食纤维,是具有使粪便
  • 五凤镇五凤镇,是中华人民共和国四川省成都市金堂县下辖的一个乡镇级行政单位。五凤镇下辖以下地区:五凤溪社区、罗家坝社区、金凤村、金箱村、白岩村、玉凤村、青凤村、白凤村和小凤