垂直轴定理

✍ dations ◷ 2025-11-30 01:37:03 #刚体,经典力学,动力学

在物理学里,垂直轴定理(也叫“正交轴定理”)可以用来计算一片薄片的转动惯量。思考一个直角座标系,其中两个座标轴都包含与平行于此薄片;如果已知此薄片对于这两个座标轴的转动惯量,则垂直轴定则可以用来计算薄片对于第三个座标轴的转动惯量。

假设OXYZ座标系统的 X-轴与 Y-轴都包含与平行于此薄片,而 Z-轴垂直于薄片的面。 I X {\displaystyle I_{X}\,\!} I Y {\displaystyle I_{Y}\,\!} 分别代表薄片对于 X-轴与 Y-轴的转动惯量.那么,薄片对于 Z-轴的转动惯量为

垂直轴定理、平行轴定理、与伸展定则可以用来计算许多不同形状的物体的转动惯量。

任何实际存在的刚体都有厚度;不可能有零厚度的刚体。参考右图,假设这刚体是一块很薄的薄片,厚度 t {\displaystyle t\,\!} 是均匀的,密度也是均匀的。设定薄片的面与 XY-面共平面。那么,刚体对于 X-轴、Y-轴、与 Z-轴的转动惯量分别为

由于厚度超小于薄片的面尺寸,我们可以忽略 z 2 {\displaystyle z^{2}\,\!} 对于积分的贡献.因此,

所以,

a) 如右图,一个半径为 r {\displaystyle r\,\!} ,质量为 m {\displaystyle m\,\!} 的薄圆盘,对于 Z-轴的转动惯量为

所以,对于X-轴与 Y-轴的转动惯量是

b) 如右图,一个尺寸为 a × b {\displaystyle a\times b\,\!} ,质量为 m {\displaystyle m\,\!} 的长方形薄片,对于 X-轴、Y-轴、与 Z-轴的转动惯量分别为

很明显地,

相关

  • 弹道学弹道学(英语:ballistics)是一门研究抛射物飞行、受力及其它运动行为的应用物理学科。通过弹道学,子弹、炮弹、重力炸弹、火箭等非制导武器可以达到理想的状态。弹道学是兵器类专
  • 皇家医学会英国皇家医学会(Royal Society of Medicine)为一个以提供医学培训为主的专业会员制学会。学会始创于1805年,并于1907年获得皇家特许状。学会位于首都伦敦。
  • 鲁宾鲁宾可以指:
  • 棋类棋类、棋类游戏、棋是华人对游戏依照用具与内容来区别的一种特有分类名称,英文无直接对应的字词,然而多数种类棋子可翻成"Piece",或会分类成棋盘游戏("Boardgame"),藏族可对应的
  • Mgsub2/subSn锡化镁是一种二元金属间化合物,化学式为Mg2Sn。锡化镁可由相应化学计量比的单质共熔得到:锡化镁是浅蓝色的晶体,属立方晶系,空间群Fm3m,晶胞参数a = 0.67594 nm, Z = 4,具有CaF2结
  • 淡水海关码头坐标:25°10′29″N 121°25′55″E / 25.1746737525711°N 121.431852157263°E / 25.1746737525711; 121.431852157263淡水港又称淡水(沪尾)海关码头,是淡水河的河口港,曾经为
  • Return to myself《Return to myself》是日本女性创作歌手米仓千寻的第13张单曲。2000年7月26日由STARCHILD(King Records旗下公司)发行。《Return to myself》是动画《六门天外》采选当作动画
  • 埃德温·基思·汤姆森埃德温·基思·汤姆森(英语:Edwin Keith Thomson;1919年2月8日-1960年12月9日),通常称为基思·汤姆森,是一位美国共和党的政治人物,曾在1955年至1960年期间担任三届美国众议院怀俄明
  • 玛格丽特 (瓦卢瓦)瓦卢瓦的玛格丽特 (法语:;1553年5月14日-1615年3月27日)又被称为玛戈王后(la Reine Margot),生于圣日耳曼昂莱的皇家城堡;死于巴黎。她是法国和纳瓦拉的王后,同时也是瓦卢瓦女公爵。
  • 菲尔丁菲尔丁(英语:Fielding)可以指: