陪集

✍ dations ◷ 2024-12-23 00:43:37 #群论

数学上,若为群,为其子群,而为中元素,则

仅当为正规子群时,左右陪集相同,这也是子群正规性的一个定义。

陪集指某个中子群的左或右陪集。因为 =  ( −1 ),(的)右陪集和(共轭子群 −1 的)左陪集 ( −1 )是相等的。因此不规定所使用的子群而讨论一个陪集是左陪集或右陪集是没有意义的。

对于交换群或者记为加法形式的群,陪集可以分别用+和+表示。

加法循环群 Z4 = {0, 1, 2, 3} = ,有子群 = {0, 2}(同构于Z2)。在中的左陪集为

因此存在两种不同的陪集本身和1 + = 3 + 。注意每个中元素或者在中,或者在1 + 中,也即, ∪ (1 +  ) = ,所以在中不同的陪集构成的一个划分。因为Z4是交换群,右陪集和左陪集相同。

另一个陪集的例子来自线性空间中。线性空间的向量在向量加法下组成一个阿贝尔群。可以证明原来的线性空间的子空间是这个群的子群。对于给定的线性空间 ,子空间 和 中的一个固定向量 ,集合

被称为“仿射子空间”。它们都是 的陪集。对于欧几里得空间,仿射子空间代表与给定的过原点的直线或平面平行的直线或平面。

= 当且仅当 是 中的元素。

一个子群 的两个左(右)陪集要么相同,要么不交——即左(右)陪集的集合构成了群 的一个划分:群中的每个元素属于且仅属于一个左(右)陪集。特别地,单位元只在一个陪集中,即是 自己。因此 也是所有左(右)陪集中唯一的子群。这个划分称为 对 的左(右)陪集分解。

如果定义 中的等价关系为: ~H ( 等价于 )当且仅当 -1 ∈ ,那么 在 中的左陪集正是所有不同的等价类。类似的结论对右陪集也成立(当 x y 1 H {\displaystyle xy^{-1}\in H} 的所有左(右)陪集的阶都是一样的。 在 中的左陪集个数和右陪集个数也是一样的,称为 在 中的指数。记作 {\displaystyle } 为有限群时:

如果 不是 的正规子群,那么它的左陪集和右陪集不相等:存在 中元素 使得不存在符合 = 的元素 ,或者说 的左陪集构成的划分( 对 的左陪集分解)不同于 的右陪集构成的划分( 对 的右陪集分解)。

另一方面,子群 为正规子群当且仅当对 中所有元素 , = 。这时子群 所有的陪集构成一个群,称为 对 的商群,记作 /。其元素间的运算 ∗ 定义为( )∗( ) = 。这个定义自洽当且仅当 为正规子群。

无限群可能有具有有限指数的子群(例如,整数群中的偶数)。可以证明,这样的子群总是包含一个具有有限指数的(的)正规子群。事实上,如果具有指数,则的指数是!的因子。这一性质可以通过具体的例子来体现:考虑通过乘法在的左陪集上的置换作用(或者,在右陪集上的作用也是同样的例子)

其中 S H {\displaystyle S_{H}} 中任意的 , π g   : a H g a H {\displaystyle \pi _{g}\ :aH\mapsto gaH} 的一个正规子群,而它的象是的一个商群:一个在个元素上的对称群的子群。

= 2时,上述性质表明指数为2的子群总是一个正规子群,因为 2!=2。

相关

  • 胞管肾纲见内文胞管肾纲(学名:Secernentea),又名侧尾腺纲或尾感器纲,是线虫动物门之下的一个重要的纲。胞管肾纲之下的纲目计有:
  • 高科技产业卫星导航系统高科技,或称高技术、高新,指的是最先进的尖端科技。对于高科技来说,并没有什么特别的分类法,到了1960年代,商家为了促销,把只要不是低科技(英语:Low technology)的产品都
  • 宁远战役抚清之战 · 萨尔浒之战 · 开铁之战 · 辽沈之战 · 镇江之战 · 林畔之战 · 广宁之战 · 辽南之战 · 亮马佃大捷 · 牛毛大捷 · 乌鸡关大捷 · 横
  • 毕安生毕安生(法语:Jacques Picoux,1948年11月9日-2016年10月16日),生于法国,长期在台湾教授法语与法国文学,曾任教于台湾大学外文系。他是一名画家,从事拼贴画创作。深爱电影艺术,曾参与台
  • 切斯瓦夫·姆沃特-菲亚乌科夫斯基切斯瓦夫·姆沃特-菲亚乌科夫斯基(波兰语:Czesław Młot-Fijałkowski,1892年–1944年),波兰军官,衔至准将。1892年4月14日,切斯瓦夫·菲亚乌科夫斯基在奥卡莱沃(现位于雷平县,时属
  • 北带方北带方(韩语:북대방),是存在于公元一世纪的古代朝鲜半岛西部部落国家。北带方本是竹覃城,前汉设立乐浪郡。后乐浪僭称乐浪国,和带方人建立的带方国。新罗弩礼王四年(27年),带方人与乐
  • 三美电机三美电机是日本大型电机公司,总部位于东京都多摩市。早期经营并不顺利,直到1990年代和松下寿电子工业合作生产PC/AT外部记忆装置,搭上电脑革命开始崛起,后来生产1.44MB软驱大发
  • 毛里·昆纳斯毛里·塔皮奥·昆纳斯(芬兰语:Mauri Tapio Kunnas,1950年2月11日-),芬兰图形设计师、作家、艺术家及漫画家。昆纳斯以其广泛并深受欢迎的儿童文学作品而著称,这些作品包括历史题材
  • 布拉瑟山坐标:47°6′23″N 11°24′42″E / 47.10639°N 11.41167°E / 47.10639; 11.41167布拉瑟山(德语:Blaser),是奥地利的山峰,位于该国西部,由蒂罗尔州负责管辖,属于斯图拜阿尔卑斯山
  • 普朗克电荷物理学中,普朗克电荷( q P {\displaystyle q_{\scriptscrip