陪集

✍ dations ◷ 2025-07-02 09:35:16 #群论

数学上,若为群,为其子群,而为中元素,则

仅当为正规子群时,左右陪集相同,这也是子群正规性的一个定义。

陪集指某个中子群的左或右陪集。因为 =  ( −1 ),(的)右陪集和(共轭子群 −1 的)左陪集 ( −1 )是相等的。因此不规定所使用的子群而讨论一个陪集是左陪集或右陪集是没有意义的。

对于交换群或者记为加法形式的群,陪集可以分别用+和+表示。

加法循环群 Z4 = {0, 1, 2, 3} = ,有子群 = {0, 2}(同构于Z2)。在中的左陪集为

因此存在两种不同的陪集本身和1 + = 3 + 。注意每个中元素或者在中,或者在1 + 中,也即, ∪ (1 +  ) = ,所以在中不同的陪集构成的一个划分。因为Z4是交换群,右陪集和左陪集相同。

另一个陪集的例子来自线性空间中。线性空间的向量在向量加法下组成一个阿贝尔群。可以证明原来的线性空间的子空间是这个群的子群。对于给定的线性空间 ,子空间 和 中的一个固定向量 ,集合

被称为“仿射子空间”。它们都是 的陪集。对于欧几里得空间,仿射子空间代表与给定的过原点的直线或平面平行的直线或平面。

= 当且仅当 是 中的元素。

一个子群 的两个左(右)陪集要么相同,要么不交——即左(右)陪集的集合构成了群 的一个划分:群中的每个元素属于且仅属于一个左(右)陪集。特别地,单位元只在一个陪集中,即是 自己。因此 也是所有左(右)陪集中唯一的子群。这个划分称为 对 的左(右)陪集分解。

如果定义 中的等价关系为: ~H ( 等价于 )当且仅当 -1 ∈ ,那么 在 中的左陪集正是所有不同的等价类。类似的结论对右陪集也成立(当 x y 1 H {\displaystyle xy^{-1}\in H} 的所有左(右)陪集的阶都是一样的。 在 中的左陪集个数和右陪集个数也是一样的,称为 在 中的指数。记作 {\displaystyle } 为有限群时:

如果 不是 的正规子群,那么它的左陪集和右陪集不相等:存在 中元素 使得不存在符合 = 的元素 ,或者说 的左陪集构成的划分( 对 的左陪集分解)不同于 的右陪集构成的划分( 对 的右陪集分解)。

另一方面,子群 为正规子群当且仅当对 中所有元素 , = 。这时子群 所有的陪集构成一个群,称为 对 的商群,记作 /。其元素间的运算 ∗ 定义为( )∗( ) = 。这个定义自洽当且仅当 为正规子群。

无限群可能有具有有限指数的子群(例如,整数群中的偶数)。可以证明,这样的子群总是包含一个具有有限指数的(的)正规子群。事实上,如果具有指数,则的指数是!的因子。这一性质可以通过具体的例子来体现:考虑通过乘法在的左陪集上的置换作用(或者,在右陪集上的作用也是同样的例子)

其中 S H {\displaystyle S_{H}} 中任意的 , π g   : a H g a H {\displaystyle \pi _{g}\ :aH\mapsto gaH} 的一个正规子群,而它的象是的一个商群:一个在个元素上的对称群的子群。

= 2时,上述性质表明指数为2的子群总是一个正规子群,因为 2!=2。

相关

  • 重庆温泉重庆市北温泉风景区位于重庆市北碚区嘉陵江小三峡温汤峡畔,缙云山麓。是中国开发利用最早、至今仍在使用的温泉之一。1982年被中国国务院批准定为中国首批国家级风景名胜区之
  • Ohira–Bestmann反应Seyferth–Gilbert增碳反应(Seyferth-Gilbert homologation),又称Seyferth-Gilbert同系化反应芳酮(或醛)与重氮甲基膦酸二甲酯(Seyferth-Gilbert试剂)在叔丁醇钾存在下反应生成取代
  • 阁僚政治主题国务大臣(日语:国務大臣/こくむだいじん kokumudaijin ?)是日本内阁成员的正式称呼,简称“大臣”,一般也称之为“阁僚”或“阁员”,相当于共和制内阁的部长,如外务大臣、
  • 和平与进步广播电台和平与进步广播电台(俄语:Мир и Прогресс)是一家苏联电台,1964年11月开始广播,苏联解体前后停播。名义上是一家由“苏联群众团体”主办的广播电台,实际是苏联官方的一
  • 亚历山大·亚历山德罗维奇·波格丹诺夫亚历山大·亚历山德罗维奇·波格丹诺夫(俄语:Алекса́ндр Алекса́ндрович Богда́нов 1873年8月22日-1928年4月7日)俄罗斯内科医生、哲学家、
  • 罗忠忱罗忠忱(1880年11月-1972年),字建侯,福建闽侯人。是西南交通大学唐山交大时期的第一位中国教授。于1921年7月至1922年7月担任唐山交大校长。于1943年8月至1945年6月担任交通大学贵
  • 宗室端镇宗室端镇(1909年7月2日-1962年)、端镇,又名金东屏,爱新觉罗氏,末代豫亲王。民国二年,依照民国与清王国签订《优待条例》中“清王公世爵概仍其旧”,袭豫亲王爵位。1915年,在其母佟佳氏
  • 德米特里二世 (马其顿)德米特里二世(希腊语:Δημήτριος B,?-前229年)安提柯王朝的马其顿国王(前239年~前229年在位)。德米特里二世为马其顿国王(贡那特的)安提柯二世之子。在其父仍在世时,他就已经是
  • 埃文·贾格尔埃文·贾格尔(英语:Evan Reese Jager,1989年3月8日-)是一名美国田径运动员,是目前的北美3000米障碍赛记录保持者(8:00.45),位列世界第13位。2016年8月17日,他以8分04.28秒的成绩获得里
  • 黛博拉·安·霍尔黛博拉·安·霍尔(英语:Deborah Ann Woll,1985年2月7日-)是一名美国女演员。较知名的是在HBO影集《真愛如血》中饰演洁西卡·汉比(Jessica Hamby)一角。黛博拉·安·霍尔具有爱尔兰