陪集

✍ dations ◷ 2025-07-11 07:12:38 #群论

数学上,若为群,为其子群,而为中元素,则

仅当为正规子群时,左右陪集相同,这也是子群正规性的一个定义。

陪集指某个中子群的左或右陪集。因为 =  ( −1 ),(的)右陪集和(共轭子群 −1 的)左陪集 ( −1 )是相等的。因此不规定所使用的子群而讨论一个陪集是左陪集或右陪集是没有意义的。

对于交换群或者记为加法形式的群,陪集可以分别用+和+表示。

加法循环群 Z4 = {0, 1, 2, 3} = ,有子群 = {0, 2}(同构于Z2)。在中的左陪集为

因此存在两种不同的陪集本身和1 + = 3 + 。注意每个中元素或者在中,或者在1 + 中,也即, ∪ (1 +  ) = ,所以在中不同的陪集构成的一个划分。因为Z4是交换群,右陪集和左陪集相同。

另一个陪集的例子来自线性空间中。线性空间的向量在向量加法下组成一个阿贝尔群。可以证明原来的线性空间的子空间是这个群的子群。对于给定的线性空间 ,子空间 和 中的一个固定向量 ,集合

被称为“仿射子空间”。它们都是 的陪集。对于欧几里得空间,仿射子空间代表与给定的过原点的直线或平面平行的直线或平面。

= 当且仅当 是 中的元素。

一个子群 的两个左(右)陪集要么相同,要么不交——即左(右)陪集的集合构成了群 的一个划分:群中的每个元素属于且仅属于一个左(右)陪集。特别地,单位元只在一个陪集中,即是 自己。因此 也是所有左(右)陪集中唯一的子群。这个划分称为 对 的左(右)陪集分解。

如果定义 中的等价关系为: ~H ( 等价于 )当且仅当 -1 ∈ ,那么 在 中的左陪集正是所有不同的等价类。类似的结论对右陪集也成立(当 x y 1 H {\displaystyle xy^{-1}\in H} 的所有左(右)陪集的阶都是一样的。 在 中的左陪集个数和右陪集个数也是一样的,称为 在 中的指数。记作 {\displaystyle } 为有限群时:

如果 不是 的正规子群,那么它的左陪集和右陪集不相等:存在 中元素 使得不存在符合 = 的元素 ,或者说 的左陪集构成的划分( 对 的左陪集分解)不同于 的右陪集构成的划分( 对 的右陪集分解)。

另一方面,子群 为正规子群当且仅当对 中所有元素 , = 。这时子群 所有的陪集构成一个群,称为 对 的商群,记作 /。其元素间的运算 ∗ 定义为( )∗( ) = 。这个定义自洽当且仅当 为正规子群。

无限群可能有具有有限指数的子群(例如,整数群中的偶数)。可以证明,这样的子群总是包含一个具有有限指数的(的)正规子群。事实上,如果具有指数,则的指数是!的因子。这一性质可以通过具体的例子来体现:考虑通过乘法在的左陪集上的置换作用(或者,在右陪集上的作用也是同样的例子)

其中 S H {\displaystyle S_{H}} 中任意的 , π g   : a H g a H {\displaystyle \pi _{g}\ :aH\mapsto gaH} 的一个正规子群,而它的象是的一个商群:一个在个元素上的对称群的子群。

= 2时,上述性质表明指数为2的子群总是一个正规子群,因为 2!=2。

相关

  • 华尔瑟·弗莱明华尔瑟·弗莱明(Walther Flemming,1843年4月21日-1905年8月4日)是一为德国生物学家,为细胞遗传学的创建者,是早期对细胞分裂过程作出观察与研究的科学家,他将许多研究结果发表在188
  • 俄白联盟俄白联盟(俄语:Сою́з Росси́и и Белору́ссии),前身是俄白共同体,是由俄罗斯和白俄罗斯于1997年4月2日签订《俄罗斯和白俄罗斯联盟条约》而设立。两国公
  • 裘氏紫褐牛肝菌裘氏紫褐牛肝菌(学名:Boletus violaceo-fuscus),或称紫褐牛肝菌、紫牛肝菌。菌伞阳面呈深紫色、平滑。湿时略带黏性。菌肉白色。菌柄圆柱型暗紫色、表面有白色网纹,基部膨大。夏
  • 原辰马商会本町店铺坐标:25°02′44.2″N 121°30′48.2″E / 25.045611°N 121.513389°E / 25.045611; 121.513389原辰马商会本町店铺,建于1929年,最初为原辰马商会本町店铺,之后由专卖局台北支
  • 幻龙目幻龙目(Nothosauroidea)又名孽子龙目,是群三叠纪的海生爬行动物,属于鳍龙超目,可能类似现代的海豹,在水中捕抓食物而回到岸边的岩石与海滩。它们的身长平均约3米,有长的身体与尾巴
  • 台湾麋鹿台湾麋鹿(学名:Elaphurus formosanus),又名台湾四不像,是一种已灭绝的麋鹿,其化石在台南左镇发现。
  • 数量化理论数量化理论(数量化理论、Hayashi's quantification methods),是日本统计数理研究所的原所长林知己夫在1940年代后期到1950年代开发的日本独自的多维数据分析法。数量化理论有I
  • 书评书评简言之,即是介绍书籍内容,并评论其得失之谓。根据美国《兰登字典》解释:“书评是对于新出版的书加以批判(Critical description)和评价(evaluation),而发表在报纸或杂志者。”而
  • 月冈芳年月冈芳年(日语:月岡 芳年/つきおか よしとし ,1839年4月30日(天保10年旧历3月17日)—1892年(明治25年)6月9日)日本的画家,幕末至明治前期活动的浮世绘画师。姓吉冈(よしおか)、后姓月冈
  • 周口市第一高级中学周口市第一高级中学,简称周口一高,是河南省周口市一所高级中学,系河南省首批示范性高中。学校始建于1959年,前身为商水县第一高级中学。2001年改为现名。学校分东、西两个校区。