陪集

✍ dations ◷ 2025-01-31 02:07:05 #群论

数学上,若为群,为其子群,而为中元素,则

仅当为正规子群时,左右陪集相同,这也是子群正规性的一个定义。

陪集指某个中子群的左或右陪集。因为 =  ( −1 ),(的)右陪集和(共轭子群 −1 的)左陪集 ( −1 )是相等的。因此不规定所使用的子群而讨论一个陪集是左陪集或右陪集是没有意义的。

对于交换群或者记为加法形式的群,陪集可以分别用+和+表示。

加法循环群 Z4 = {0, 1, 2, 3} = ,有子群 = {0, 2}(同构于Z2)。在中的左陪集为

因此存在两种不同的陪集本身和1 + = 3 + 。注意每个中元素或者在中,或者在1 + 中,也即, ∪ (1 +  ) = ,所以在中不同的陪集构成的一个划分。因为Z4是交换群,右陪集和左陪集相同。

另一个陪集的例子来自线性空间中。线性空间的向量在向量加法下组成一个阿贝尔群。可以证明原来的线性空间的子空间是这个群的子群。对于给定的线性空间 ,子空间 和 中的一个固定向量 ,集合

被称为“仿射子空间”。它们都是 的陪集。对于欧几里得空间,仿射子空间代表与给定的过原点的直线或平面平行的直线或平面。

= 当且仅当 是 中的元素。

一个子群 的两个左(右)陪集要么相同,要么不交——即左(右)陪集的集合构成了群 的一个划分:群中的每个元素属于且仅属于一个左(右)陪集。特别地,单位元只在一个陪集中,即是 自己。因此 也是所有左(右)陪集中唯一的子群。这个划分称为 对 的左(右)陪集分解。

如果定义 中的等价关系为: ~H ( 等价于 )当且仅当 -1 ∈ ,那么 在 中的左陪集正是所有不同的等价类。类似的结论对右陪集也成立(当 x y 1 H {\displaystyle xy^{-1}\in H} 的所有左(右)陪集的阶都是一样的。 在 中的左陪集个数和右陪集个数也是一样的,称为 在 中的指数。记作 {\displaystyle } 为有限群时:

如果 不是 的正规子群,那么它的左陪集和右陪集不相等:存在 中元素 使得不存在符合 = 的元素 ,或者说 的左陪集构成的划分( 对 的左陪集分解)不同于 的右陪集构成的划分( 对 的右陪集分解)。

另一方面,子群 为正规子群当且仅当对 中所有元素 , = 。这时子群 所有的陪集构成一个群,称为 对 的商群,记作 /。其元素间的运算 ∗ 定义为( )∗( ) = 。这个定义自洽当且仅当 为正规子群。

无限群可能有具有有限指数的子群(例如,整数群中的偶数)。可以证明,这样的子群总是包含一个具有有限指数的(的)正规子群。事实上,如果具有指数,则的指数是!的因子。这一性质可以通过具体的例子来体现:考虑通过乘法在的左陪集上的置换作用(或者,在右陪集上的作用也是同样的例子)

其中 S H {\displaystyle S_{H}} 中任意的 , π g   : a H g a H {\displaystyle \pi _{g}\ :aH\mapsto gaH} 的一个正规子群,而它的象是的一个商群:一个在个元素上的对称群的子群。

= 2时,上述性质表明指数为2的子群总是一个正规子群,因为 2!=2。

相关

  • 互联网档案馆网站时光机(英语:Wayback Machine)是万维网或互联网上传播的其他信息的一个数字文件网站,是美国加利福尼亚州旧金山的非营利组织——互联网档案馆最重要的服务之一。网站时光机
  • 迟发性肌肉痛延迟性肌肉酸痛(英语:delayed onset muscle soreness,DOMS)是一种运动之后24–72小时出现的肌肉酸痛或不舒适。通常会持续两至三日。旧式理论普遍认为该痛症为乳酸积聚所引起,但
  • 鲍氏南方古猿鲍氏傍人(学名:Paranthropus boisei)为人科傍人属的一种,是早期的人族及最大的傍人。他生存于260-120万年前上新世至更新世的东非。他最初被命名鲍氏东非人,及后被更名为鲍氏南方
  • 克列诺片段克列诺片段(Klenow fragment)或称克列诺酶(Klenow enzyme),是汉斯·克列诺1970年用枯草杆菌蛋白酶(subtilisin)处理大肠杆菌DNA聚合酶Ⅰ时,得到的两个片段中分子量较大的一个,它含有6
  • 协和广场协和广场(法语:Place de la Concorde,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code200
  • 伊里奥特弗八世伊里奥特弗八世,又译因提夫八世。是埃及第十七王朝的一位国王,他在位期间正值第二中间期,当时埃及有第十七王朝和埃及第十五王朝共存。
  • 丛林食物丛林食物(英语:Bush tucker),可以指任何原生于澳大利亚为土著所食用的天然食材,包括各种生长于荒野的果实、昆虫、树皮和肉类,如袋鼠、鸸鹋、鳄鱼、蜥蜴等。自1970年代起,非土著居
  • 朝服朝服或称朝衣、具服,是中国古代的一种官服,后来传至朝鲜、越南、日本、琉球。其制度形成于汉末,通常由皇帝与大臣在朝会之时穿着,即皇帝“视朝之服”及百官“朝飨之服”,有时也包
  • Jopping《Jopping》是韩国流行音乐团体SuperM的首支单曲。歌曲于2019年10月4日作为SM娱乐与国会音乐联合发行的迷你专辑的《SuperM》的首支单曲发行。“Jopping”是跳跃(jumping)和弹
  • 广域信息论广域信息论(英语:wide area information theory)是一套以信息为维度成体系的分析宇宙一切现象的哲学思想和理论,同时需要注意的是,他与计算机科学中的信息论和香农创立信息论应区