70年前,列夫·朗道从理论上预言不存在稳定的二维晶体。然而,最近科学家已制备出石墨烯,不仅向朗道理论提出了挑战,而且已观测到包括无质量载流子效应在内的一系列相对论量子现象。2007年,理论预测表明可以从石墨烯中象拆毛衣一样拉出由成千个碳原子组成的单原子碳链,表明存在稳定的一维晶体,向朗道理论提出了更严峻的挑战。2009年春,乌克兰科学家报道他们已能从石墨烯中拉出由十几个碳原子组成的单原子碳链,初步证实了我们理论预言的可靠性。
目前的一些工作已经表明一百多个碳原子组成的单原子链是可以存在的。近年来的一些实验工作表明,通过激光烧蚀等途径可以在断裂的碳纳米管中得到纳米长度的单原子碳链,并且观测到了相应的量子效应。在一定条件下可以从石墨烯等碳材料中拉伸出具有宏观长度的一维单原子碳链。还有人对单原子碳链与光的相互作用进行研究,从理论模拟上探索单原子链的与光的相互作用的物理现象和规律,探讨单原子碳链作为分子电路导线时的可控光致电流等现象,以及掺杂单原子碳链的电学性能,预测掺杂单原子碳链和掺杂石墨烯在分子电路和光计算机上的应用前景。
激光与低维材料(如一维单原子链和二维晶体)的相互作用是一个全新的研究领域,涉及一系列重要的基础物理问题和广泛的应用背景。如下图所示,一根低温环境下的单原子碳链的电子态,是覆盖全部链长的离域(全局)量子态。理论分析表明,如果选定波长的单色激光在局域于碳原子链作用能够诱发基态于任意特定激发态的跃迁,则必然破坏相对论因果关系。进一步理论计算显示,全局量子态的局域激发,在初始阶段必然导致多光子诱导的多能态激发,随后才能建立只包括两能态的量子跃迁。此外,相关研究表明单原子碳链可作为可调谐红外激光器介质,其波长覆盖了当今红外激光器的调谐空白区域,且容易实现介质激发。