斯科惹函数(Scorers functions)是下列方程的两个解
也可以通过艾里函数定义:
G i ( z ) = ∑ k = 0 ∞ c o s ( ( 2 k − 1 ) ∗ π 3 ) Γ ( k + 1 3 ) ∗ ( 3 1 / 3 ∗ z ) k k ! {\displaystyle Gi(z)=\sum _{k=0}^{\infty }cos({\frac {(2k-1)*\pi }{3}})\Gamma ({\frac {k+1}{3}})*{\frac {(3^{1/3}*z)^{k}}{k!}}}
H i ( z ) = 3 − 2 / 3 π ∑ k = 0 ∞ Γ ( ( 2 k + 1 ) ∗ π 3 ( 3 1 / 3 ∗ z ) k k ! {\displaystyle Hi(z)={\frac {3^{-2/3}}{\pi }}\sum _{k=0}^{\infty }\Gamma ({\frac {(2k+1)*\pi }{3}}{\frac {(3^{1/3}*z)^{k}}{k!}}}