首页 >
条件概率
✍ dations ◷ 2025-06-28 00:02:19 #条件概率
本文定义了表征两个或者多个随机变量概率分布特点的术语。条件概率(英语:conditional probability)就是事件A在事件B发生的条件下发生的概率。条件概率表示为P(A|B),读作“A在B发生的条件下发生的概率”。联合概率表示两个事件共同发生的概率。A与B的联合概率表示为
P
(
A
∩
B
)
{displaystyle P(Acap B)}
或者
P
(
A
,
B
)
{displaystyle P(A,B)}
或者
P
(
A
B
)
{displaystyle P(AB)}
。边缘概率是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。需要注意的是,在这些定义中A与B之间不一定有因果或者时间序列关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。设 A 与 B 为样本空间 Ω 中的两个事件,其中 P(B)>0。那么在事件 B 发生的条件下,事件 A 发生的条件概率为:条件概率有时候也称为:后验概率。当且仅当两个随机事件A与B满足的时候,它们才是统计独立的,这样联合概率可以表示为各自概率的简单乘积。同样,对于两个独立事件A与B有以及换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。当且仅当A与B满足且的时候,A与B是互斥的。因此,换句话说,如果B已经发生,由于A不能和B在同一场合下发生,那么A发生的概率为零;同样,如果A已经发生,那么B发生的概率为零。考虑概率空间Ω(S, σ(S)),其中σ(S)是集S上的σ代数,Ω上对应于随机变量X的概率测度(可以理解为概率分布)为PX;又A∈σ(S),PX(A)≥0(这里可以理解为事件A,A不是零测集)。则∀E∈σ(S),可以定义集函数PX|A如下:PX|A(E)=PX(A∩E)/PX(A)。易知PX|A也是Ω上的概率测度,此测度称为X在A下的条件测度(条件概率分布)。独立性:设A,B∈σ(S),称A,B在概率测度P下为相互独立的,若P(A∩E)=P(A)P(E)。条件概率的谬论是假设P(A|B)大致等于P(B|A)。数学家John Allen Paulos在他的《数学盲》一书中指出医生、律师以及其他受过很好教育的非统计学家经常会犯这样的错误。这种错误可以通过用实数而不是概率来描述数据的方法来避免。P(A|B)与P(B|A)的关系如下所示:下面是一个虚构但写实的例子,P(A|B)与P(B|A)的差距可能令人惊讶,同时也相当明显。若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。而且就算在告知他其实是健康的人后,也可能因此对他的人生有负面影响。这个问题的重要性,最适合用条件概率的观点来解释。假设人群中有1%的人罹患此疾病,而其他人是健康的。我们随机选出任一个体,并将患病以disease、健康以well表示:假设检验动作实施在未患病的人身上时,有1%的概率其结果为假阳性(阳性以positive表示)。意即:最后,假设检验动作实施在患病的人身上时,有1%的概率其结果为假阴性(阴性以negative表示)。意即:现在,由计算可知:是整群人中健康、且测定为阴性者的比率。是整群人中得病、且测定为阳性者的比率。是整群人中被测定为假阳性者的比率。是整群人中被测定为假阴性者的比率。进一步得出:是整群人中被测出为阳性者的比率。是某人被测出为阳性时,实际上真的得了病的概率。这个例子里面,我们很轻易可以看出P(positive|disease)=99%与P(disease|positive)=50%的差距:前者是你得了病,而被检出为阳性的条件概率;后者是你被检出为阳性,而你实际上真得了病的条件概率。由我们在本例中所选的数字,最终结果可能令人难以接受:被测定为阳性者,其中的半数实际上是假阳性。
相关
- 白细胞介素-2n/an/an/an/an/an/an/an/an/an/a白细胞介素2 (英语:Interleukin 2,IL-2)是细胞因子中白细胞介素的一种,在免疫系统中起重要作用。它是一种蛋白质,负责调节白细胞(白细胞,通常是淋
- 托克劳群岛面积以下资讯是以2016年10月估计国家领袖国内生产总值(购买力平价) 以下资讯是以2017年估计国内生产总值(国际汇率) 以下资讯是以1993年估计托克劳(英语:Tokelau),也称联合群岛或尤
- 勒文海姆李奥帕德·勒文海姆(生于1878年6月26日,德国克雷费尔德;死于1957年5月5日,柏林)是一位德国数学家,主要成就在数理逻辑方面。纳粹政权强迫勒文海姆退休,因为在纽伦堡法案,他被认为只
- 意外意外事故是指一件在指定时间和地点不经常发生的事件,对事件中的当事人而言是没有预计过的,而且这事件会为主角及其身边的人带来某种后果,而后果多数来说都是负面的。意外是很大
- 壁画壁画是一种装饰墙壁和天花板的绘画,可说是最原始的绘画型式。最早的壁画是在法国一个山洞中发现的,因此有时壁画也称洞穴画。壁画的历史发展到最后,变成建筑装饰,和室内装饰的一
- 半总统制半总统制(英语:Semi-presidentialism)又称双首长制、混合制,是一种同时具有总统制和内阁制(议会制)特征的共和制政体。半总统制的总统作为国家元首有一些特殊的行政权力,一般而言其
- 偶氮化物偶氮化合物是一类含氮有机化合物,通式为R-N=N-R',R/R'为有机基团,可以是芳基或烷基。N=N称为偶氮基。若R/R'都为氢,则成为二亚胺(HN=NH)。以芳香族偶氮化合物最为稳定,也最为常用,π
- 氢经济氢经济(英文:Hydrogen Economy)一词,由John Bockris(英语:John Bockris) 在美国通用汽车公司技术中心于1970年演讲所创。当时发生第一次能源危机时,主要为描绘未来氢气取代石油成为
- 丹麦城市列表以下为主要丹麦城市列表:1 = 所有人口超过20,000的城市 2 = Ølstykke-Stenløse is a new city, created by conurbation between Ølstykke and Stenløse on 2010-01-01.
- 戈特霍尔德·埃夫莱姆·莱辛戈特霍尔德·埃弗拉伊姆·莱辛(Gotthold Ephraim Lessing,1729年1月22日生于德国卡门茨—1781年2月15日卒于德国布伦瑞克)是德国启蒙运动时期最重要的作家和文艺理论家之一,他的