贝叶斯数学模型

✍ dations ◷ 2025-08-28 17:22:03 #贝叶斯数学模型
贝叶斯推断(英语:Bayesian inference)是推论统计的一种方法。这种方法使用贝叶斯定理,在有更多证据及信息时,更新特定假设的概率。贝叶斯推断是统计学(特别是数理统计学)中很重要的技巧之一。贝叶斯更新(Bayesian updating)在序列分析中格外的重要。贝叶斯推断应用在许多的领域中,包括科学、工程学、哲学、医学、体育运动、法律等。在决策论的哲学中,贝叶斯推断和主观概率有密切关系,常常称为贝叶斯概率。贝叶斯定理是由统计学家托马斯·贝斯(Thomas Bayes)根据许多特例推导而成,后来被许多研究者推广为一普遍的定理贝叶斯推断将后验概率(考虑相关证据或数据后,某一事件的条件几率)推导为二个前件、先验概率(考虑相关证据或数据前,某一事件不确定性的几率)及似然函数(由概率模型推导而得)的结果。贝叶斯推断根据贝叶斯定理计算后验概率:其中针对不同的 H {displaystyle textstyle H} 数值,只有 P ( H ) {displaystyle textstyle P(H)} 和 P ( E ∣ H ) {displaystyle textstyle P(Emid H)} (都在分子)会影响 P ( H ∣ E ) {displaystyle textstyle P(Hmid E)} 的数值。假说的后验概率和其先验概率(固有似然率)和新产生的似然率(假说和新得到证据的相容性)乘积成正比。贝叶斯定理也可以写成下式:其中系数 P ( E ∣ H ) P ( E ) {displaystyle textstyle {frac {P(Emid H)}{P(E)}}} 可以解释成 E {displaystyle E} 对 H {displaystyle H} 几率的影响。贝叶斯推断最关键的点是可以利用贝斯定理结合新的证据及以前的先验几率,来得到新的几率(这和频率学派推断相反,频率论推论只考虑证据,不考虑先验几率)。而且贝叶斯推断可以迭代使用:在观察一些证据后得到的后设几率可以当作新的先验几率,再根据新的证据得到新的后设几率。因此贝斯定理可以应用在许多不同的证据上,不论这些证据是一起出现或是不同时出现都可以,这个程序称为贝斯更新(Bayesian updating)。若用文字表示,即为“后验和先验及似然率的乘积成正比”,有时也会写成“后验 = 先验 × 似然率,在有证据的情形下”。贝叶斯推断有在人工智能及专家系统上应用。自1950年代后期开始,贝叶斯推断技巧就是电脑模式识别技术中的基础。现在也越来越多将贝叶斯推断和以模拟为基础的蒙地卡罗方法合并使用的应用,因为一些模杂的模型无法用贝叶斯分析得到解析解,因图模式结构可以配合一些快速的模拟方式(例如吉布斯抽样或是其他Metropolis–Hastings算法)。因为上述理由,贝叶斯推断在系统发生学研究社群中来越受到重视,许多的应用可以用同时估测许多人口和进化参数。“贝叶斯”是指托马斯·贝叶斯(1702–1761),他证明了一个特例(现在知道是贝叶斯定理的特例),不过皮埃尔-西蒙·拉普拉斯(1749–1827)推导了此定理的一般版本,应用在天体力学、医疗统计学、可靠度(英语:Reliability (statistics))及法学上。早期的贝叶斯推断是用拉普拉斯不充分理由原则(英语:principle of insufficient reason)所得的均匀先验,称为逆向几率(英语:inverse probability)(因为是由观测值倒推参数的归纳推理,或是从结果倒推到原因)。在1920年代以后,逆向几率很大程度的被另一群称为频率论统计(英语:frequentist statistics)的方式取代。二十世纪时,拉普拉斯的概念往下分支为二派,开始出现主观贝叶斯方法及客观贝叶斯方法。客观贝叶斯方法(或是不提供信息的贝叶斯方法)中,统计分析只依照假设的模型、分析的资料以及给定先验分布的方式(不同的客观贝叶斯方法会有不同给定先验分布的方式)。主观贝叶斯方法(或是提供信息的贝叶斯方法)中,先验的规格依信念(也是分析希望要呈现的主张)而定,信念可以由专家整理资讯后总结产生,也可以根据以往的研究等。1980年代发现了马尔科夫蒙特卡洛方法,让贝叶斯方法的研究及应用有大幅的发展,除去了许多运算上的问题,也有越来越多人愿意参与非标准的复杂问题。不过虽然贝叶斯方法的研究仍在成长,大部分大学本科的教学仍是以频率论统计(英语:frequentist statistics)为基础 。不过贝叶斯方法也广为许多领域接受及应用,例如在机器学习的领域中。

相关

  • 史蒂芬·古尔德史蒂芬·杰伊·古尔德(英语:Stephen Jay Gould,1941年9月10日-2002年5月20日)是一名美国古生物学家、演化生物学家,科学史学家与科普作家,职业生涯中大多在哈佛大学担任教职,并曾在
  • 罗布利·威廉姆斯罗布利·库克·威廉姆斯(Robley Cook Williams,1908年10月13日 - 1995年1月3日)是一位美国早期生物学家及病毒学家,是生物物理理事会首任主席。威廉姆斯以运动员身份考入康奈尔
  • 消瘦消瘦(英语:emaciation)被定义为由于皮下脂肪和身体肌肉的损失导致过度的体重减轻和不自然的羸瘦。过度的消瘦会影响到人类和动物的健康。消瘦是由严重的营养不良和饥饿引起的。
  • Drugs.comDrugs.com 是美国一个提供药物(学)资讯给消费者和专业医护人员的线上药物百科。Drugs.com这个域名原本由柏尼·纽贝克在1994年注册。1999年,互联网正处于快速发展期,艾瑞克·麦
  • CYP1A22HI4· iron ion binding · electron carrier activity · oxidoreductase activity · oxidoreductase activity, acting on paired donors, with incorporation or re
  • 拉斯维加斯拉斯维加斯(英语:City of Las Vegas),简称赌城,是美国内华达州人口最多的城市,也是内华达州克拉克县的县治,有着以赌博业为中心庞大的旅游、购物、度假产业,是世界知名的度假地之一
  • 食品化学食品化学(英语:food chemistry),是在食品领域之中,研究食品里所有天然与非天然食材的合成或分解的化学过程和相互作用。研究内容的主要范围,包括食品营养成分分析、食品色香味化学
  • 狩猎猎物是任何作为动物的狩猎运动或者肉类食物的物品。世界不同地区的捕猎动物的类型和范围各不相同。在一些国家,猎物被分类,包括所需许可证的法定分类,即“小猎物”或“大猎物”
  • IIAbr /2固体、 液体、 气体碱土金属是指在元素周期表中同属第2族(旧称ⅡA族)的六个金属元素:铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)、镭(Ra),其中镭具有放射性。碱土金属都是银白色的、比较软的金
  • 西哥特人西哥特人(拉丁语:Visigothi),港、台译作西哥德人,是东日耳曼部落的两个主要分支之一,另一个分支是东哥特人。在民族大迁移时期,是摧毁罗马帝国的众多蛮族中的一个。公元4世纪西哥特