贝叶斯数学模型

✍ dations ◷ 2025-05-15 02:29:10 #贝叶斯数学模型
贝叶斯推断(英语:Bayesian inference)是推论统计的一种方法。这种方法使用贝叶斯定理,在有更多证据及信息时,更新特定假设的概率。贝叶斯推断是统计学(特别是数理统计学)中很重要的技巧之一。贝叶斯更新(Bayesian updating)在序列分析中格外的重要。贝叶斯推断应用在许多的领域中,包括科学、工程学、哲学、医学、体育运动、法律等。在决策论的哲学中,贝叶斯推断和主观概率有密切关系,常常称为贝叶斯概率。贝叶斯定理是由统计学家托马斯·贝斯(Thomas Bayes)根据许多特例推导而成,后来被许多研究者推广为一普遍的定理贝叶斯推断将后验概率(考虑相关证据或数据后,某一事件的条件几率)推导为二个前件、先验概率(考虑相关证据或数据前,某一事件不确定性的几率)及似然函数(由概率模型推导而得)的结果。贝叶斯推断根据贝叶斯定理计算后验概率:其中针对不同的 H {displaystyle textstyle H} 数值,只有 P ( H ) {displaystyle textstyle P(H)} 和 P ( E ∣ H ) {displaystyle textstyle P(Emid H)} (都在分子)会影响 P ( H ∣ E ) {displaystyle textstyle P(Hmid E)} 的数值。假说的后验概率和其先验概率(固有似然率)和新产生的似然率(假说和新得到证据的相容性)乘积成正比。贝叶斯定理也可以写成下式:其中系数 P ( E ∣ H ) P ( E ) {displaystyle textstyle {frac {P(Emid H)}{P(E)}}} 可以解释成 E {displaystyle E} 对 H {displaystyle H} 几率的影响。贝叶斯推断最关键的点是可以利用贝斯定理结合新的证据及以前的先验几率,来得到新的几率(这和频率学派推断相反,频率论推论只考虑证据,不考虑先验几率)。而且贝叶斯推断可以迭代使用:在观察一些证据后得到的后设几率可以当作新的先验几率,再根据新的证据得到新的后设几率。因此贝斯定理可以应用在许多不同的证据上,不论这些证据是一起出现或是不同时出现都可以,这个程序称为贝斯更新(Bayesian updating)。若用文字表示,即为“后验和先验及似然率的乘积成正比”,有时也会写成“后验 = 先验 × 似然率,在有证据的情形下”。贝叶斯推断有在人工智能及专家系统上应用。自1950年代后期开始,贝叶斯推断技巧就是电脑模式识别技术中的基础。现在也越来越多将贝叶斯推断和以模拟为基础的蒙地卡罗方法合并使用的应用,因为一些模杂的模型无法用贝叶斯分析得到解析解,因图模式结构可以配合一些快速的模拟方式(例如吉布斯抽样或是其他Metropolis–Hastings算法)。因为上述理由,贝叶斯推断在系统发生学研究社群中来越受到重视,许多的应用可以用同时估测许多人口和进化参数。“贝叶斯”是指托马斯·贝叶斯(1702–1761),他证明了一个特例(现在知道是贝叶斯定理的特例),不过皮埃尔-西蒙·拉普拉斯(1749–1827)推导了此定理的一般版本,应用在天体力学、医疗统计学、可靠度(英语:Reliability (statistics))及法学上。早期的贝叶斯推断是用拉普拉斯不充分理由原则(英语:principle of insufficient reason)所得的均匀先验,称为逆向几率(英语:inverse probability)(因为是由观测值倒推参数的归纳推理,或是从结果倒推到原因)。在1920年代以后,逆向几率很大程度的被另一群称为频率论统计(英语:frequentist statistics)的方式取代。二十世纪时,拉普拉斯的概念往下分支为二派,开始出现主观贝叶斯方法及客观贝叶斯方法。客观贝叶斯方法(或是不提供信息的贝叶斯方法)中,统计分析只依照假设的模型、分析的资料以及给定先验分布的方式(不同的客观贝叶斯方法会有不同给定先验分布的方式)。主观贝叶斯方法(或是提供信息的贝叶斯方法)中,先验的规格依信念(也是分析希望要呈现的主张)而定,信念可以由专家整理资讯后总结产生,也可以根据以往的研究等。1980年代发现了马尔科夫蒙特卡洛方法,让贝叶斯方法的研究及应用有大幅的发展,除去了许多运算上的问题,也有越来越多人愿意参与非标准的复杂问题。不过虽然贝叶斯方法的研究仍在成长,大部分大学本科的教学仍是以频率论统计(英语:frequentist statistics)为基础 。不过贝叶斯方法也广为许多领域接受及应用,例如在机器学习的领域中。

相关

  • 美罗培南美罗培南(英语:Meropenem),或译美洛培南,是一种有非常广泛抗菌性及可供注射的抗生素,用于治疗多种不同的感染,包括脑膜炎及肺炎。它是一种β内酰胺类抗生素,属于碳青霉烯的分类下。
  • 发热性癫痫热性痉挛(febrile convulsion),又称作又称作发烧性抽搐、热性抽搐、热性惊厥、热性全身痉挛,是一种癫痫性发作(英语:epileptic seizure),伴有体温升高的症状但是并无任何潜在的健康
  • 主动脉瓣狭窄主动脉瓣狭窄(Aortic stenosis,简称AS或AoS)乃描述左心室通向主动脉的瓣膜口狭窄的现象。可能是由主动脉瓣(英语:aortic valve)的结构异常造成,或主动脉瓣的上游或下游解剖结构的异
  • 疖(boil、furuncle)是毛囊炎的一种,其常见起因为金黄色葡萄球菌感染,可导致皮肤上出现一片由脓和死亡组织累积形成之有痛感的肿块。肿胀的疖肿基本上为充满脓液的结节。单独的疖
  • H6N1H6N1(英语:Influenza A virus subtype H6N1,记作A(H6N1)或H6N1)是一种甲型流感病毒,是禽流感病毒或禽流感病毒的一个亚型。H6N1最初于2013年6月21日在台湾发现,首例患者是一名住在
  • 蔬菜蔬菜,是指可以做菜、烹饪成为食品的,除了谷物以外的其他植物(多属于草本)生活中所指的的蔬菜,常和“水果”分开讨论。不过也常和水果合称为“蔬果”。另外,和“野菜”不同的地方,在
  • 氢氧电池氢氧电池(OXYRIDE)是一款新品种的干电池,由日本松下电器(Panasonic)所发明、并于2004年上市发售。氢氧电池的电容量较大,一般情况下,其使用寿命约是碱性电池的 1.5 倍。这使其非常
  • 处置深地质处置指在稳定的地质构造中开掘的放射性核废料存放场所,一般在地下300米以下。核废料形态、其包装、场地的密封和防渗以及地质条件等诸多因素决定了储放场所成功与否。
  • 运动失调共济失调(英语:Ataxia)是指缺乏规律,或者为笨拙,为一种神经疾病上的特征。失调可以广泛指在中枢神经系统、周围神经系统任何其中一环出状况所表现的病征,例如掌管运动和平衡的小脑
  • 前庭前庭可以指: