年轻太阳黯淡佯谬

✍ dations ◷ 2025-01-22 23:49:50 #年轻太阳黯淡佯谬
年轻太阳黯淡佯谬或年轻太阳黯淡问题是描述水在早期的地球历史上出现观测和天文物理学的预期之间明显矛盾的状况。当时,太阳输出的能量仅是现代的70%。这一问题在1972年被天文学家卡尔·萨根(Carl Sagan)和乔治·马伦(George Mullen)提出,对此一悖论的解释要考虑温室效应、天文物理学个别的影响,或两者结合共同的影响。这个悬而未决的问题是,由于太阳输出给地球的能量逐渐增加,是如何在很长的时间内维持地球上适合生命的气候。在地球历史的早期,太阳输出的能量只有现在这个时期的70%。在当时存在的环境条件下,太阳输出的能量不足以让地球的海洋维持液体的状态。天文学家卡尔·萨根和古生物学家马伦在1972年指出,这与地质和古生物证据相悖。依据标准太阳模型,与太阳相似的恒星在主序带的生命期间,由于核聚变引起的恒星核心收缩,应该会逐渐增加亮度。然而,依据预测在40亿年(4 × 109年)前的太阳光度,即使当时的温室气体浓度与现在的地球相同,任何曝露在表面的液态水都会结冰。但是,地质纪录显示,除了大约24亿年至21亿年前的休伦冰河时期是寒冷的阶段,整个地球早期表面的温度记录(英语:Global temperature record)都是持续相对温暖的。与水有关的沉淀物早在38亿年前就被发现了。早期的生命形式暗示,早在35亿年前就已经有生物了,并且基本的氨基酸和碳的同位素也非常符合现在发现的。地球最初形成时,大气层可能含有比现在更多的温室气体。二氧化碳的浓度可能较高,因为没有细菌与光合作用将CO2气体转换为有机碳和气态氧,估计其分压与现今的大气压力,1,000 kPa(10 bar)一样大。甲烷,一种非常活跃的温室气体,在大气层中混合比估计为10−4(体积比为百万分之100),与氧气发生反应产生二氧化碳和水的现象也可能非常普遍 。基于地质上对硫同位素的研究,一组科学家,包括东京工业大学的上野(Yuichiro Ueno),在2009年建议太古宙的大气中存在着羰基硫化物(OCS,carbonyl sulfide)。羰基硫化物是一种高效的温室气体,科学家们估计,额外的温室效应将足以防止地球结冰。基于2013年的一篇论文:"30-35亿年古热液石英流体包裹体中氮、氩同位素分析",的结论是氮气(dinitrogen)在古地球的热概算中没有发挥重要作用,而CO2的太古宙分压可能低于0.7大气压。伯吉斯,论文的作者之一说:"大气中的氮气含量太低,二氧化碳增加所提高的温室效应,足以温暖地球。虽然,我们的研究结果确实给出了比预期更高的二氧化碳压力读数 -与基于化石土壤的估算不一致,这可能足以抵销年轻太阳太黯淡的影响,但还需要进一步的调查"。此外,S.M. Som 在2012-2016年的研究中,根据分析被困在古熔岩中的雨滴印记和空气气泡,进一步表明大气压力低于1.1巴,并且在距今27亿年的一个世纪中可能低至0.23巴。在最初推算的大陆沉积10亿年后,地理植物学家海因里希·沃尔特(Heinrich Walter)和其他人争辩说,非生物形式的碳循环提供了负温度回馈。大气中的二氧化碳溶解于液态水中,并与来自硅酸盐风化作用的金属离子相结合产生碳酸根。当大冰期时期,这一部分的循环可能被关闭。火山的碳排放将会由于温室效应而重新开启一个温暖的时期。根据雪球地球假说,地球的海洋可能有很多的时候是完全结冰的。最近的这一段时期大概是6.3亿年前。然后,开始了多细胞生物的寒武纪大爆发。在过去,地热释放的衰变热(英语:Decay heat),从钾-40、铀-235和铀-238都比现在多得多。图表的右侧数字显示铀-235和铀-238和现代的同位素比(英语:isotope ratio)也有很大的不同,估计其比率相当于现代的低浓缩铀。因此,天然铀(英语:natural uranium)矿体如果存在,将如同一般普通水中的减速剂有能力支援天然核反应堆。因此,任何解释这种悖论的企图,无论是从衰变热还是任何潜在的天然核裂变反应堆,都必须考虑到辐射的贡献。辐射热引起地球升温的主要机制不是直接加热(即使在早期的地球投入的总热量也少于0.1%),而是建立起地壳的高地温梯度,从而产生更大的气体释出率,因而在早期的地球大气中气体析出率高,使得二氧化碳的浓度较高。此外,更热的深层地壳会限制地壳矿物的吸水性,导致早期突出海洋的高反照率土地数量减少,从而使更多的太阳能被吸收。月球在数十亿年前距离地球很近,因此产生相当大的潮汐加热。由以色列-美国物理学家Nir Shaviv(英语:Nir Shaviv)提出的太阳风对气候影响的少数观点;结合丹麦物理学家Henrik Svensmark(英语:Henrik Svensmark) 宇宙射线冷却作用的假说,解释悖论。依据Shaviv所说,早期太阳发出较现在强大的太阳风,抑制了宇宙射线而产生了保护作用。在那个时期,相较于现代适度的温室效应,足以解释地球未被冰冻的状况。在陨石中发现太阳在早期更为活跃的证据。大约在24亿年前的温度最小值伴随着宇宙射线在银河中的变星形成速率通量调变。减少的太阳撞击,稍后的结果是宇宙射线流量(CRF,cosmic ray flux)撞击的增强,这被假设是导致气候变化的关系。一个另类的太阳演化模型可以解释年轻太阳黯淡的佯谬。在这个模型中,早期的太阳经历了更长时期强大的太阳风输出。这导致大量的太阳质量损失,大约占了生命期损失的5-10%,这导致更加一致的太阳光度水准(当早期的太阳有更多的质量,到智能输出比预期更多的能量)。为了解释太古宙实弹的温暖条件,这种质量的损失必须在大约10亿年的时间间隔内发生。然而,陨石和月球样本的注入记录表明,太阳风通量的上升率仅持续了1亿年。观测与年轻太阳类似的](内阶增九?)与恒星风输出的这种摔落率相匹配,表明较高的质量损失率本身并不能解决佯谬 。太古界沉积物的检测与高温室气体浓度的假说不一致。取而代之的,适度的温度范围可以用较少的大陆面积和"缺乏生物诱导的云凝结核"来解释。这将导致更多的太阳能吸收,从而补偿较低的太阳能量产出。通常,年轻太阳黯淡佯谬是以地球的古气候为框架。然而,这一问题也出现在火星的气候背景下。火星显然在数十亿年曾经有液态水存在过,而且数量庞大:水循环、湖泊、河流、雨水,甚至是海洋。随后,大量的液态水从火星表面消失了。目前,火星表面又冷又干燥。假设除了太阳的能量输出改变之外,没有其他的变化,这将意味着火星在过去比现在更冷、更干燥。这样显然与火星探索的经验相违背,一切证据都表明过去是湿润和温暖的。对年轻太阳黯淡佯谬的解释可能要考虑太阳风的流量,和经由太阳风流失质量的观测。然而,到目前为止,对恒星的观测和模型都不支持。另一种可能的解释假定了间歇性的大量温室气体,例如甲烷。二氧化碳本身,即使压力远远高于现在,依然无法解释早期造成液态水出现在火星所需要的温度。Template:Carl Sagan

相关

  • 肿瘤学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学肿瘤学(英:Oncology)是一种研究肿瘤(尤其
  • X射线晶体学X射线晶体学是一门利用X射线来研究晶体中原子排列的学科。更准确地说,利用电子对X射线的散射作用,X射线晶体学可以获得晶体中电子密度的分布情况,再从中分析获得关于原子位置和
  • 卢旺达问题国际刑事法庭卢旺达问题国际刑事法庭(英语:International Criminal Tribunal for Rwanda, ICTR),简称卢旺达刑庭,是一个于1994年11月由联合国安全理事会以第955号决议所成立的国际法庭。该法
  • 氢化可的松皮质醇(法语:cortisol),又译成可的松(音译),属于肾上腺分泌的肾上腺皮质激素之中的糖皮质激素,在应付压力中扮演重要角色,故又被称为“压力荷尔蒙”。皮质醇会提高血压、血糖水平和产
  • 胃底胃是人和脊椎动物消化系统的一部分,是贮藏和消化食物的器官。胃上接食道,下接十二指肠。位置大约位于人体的左上腹,肋骨以下。胃主要将大块食物研磨成小块,将食物中的大分子降解
  • 大西洋-刚果语族大西洋-刚果语族是尼日尔-刚果语系当中,使用者最多的一个语族。在《Ethnologue》中尼日尔-刚果语系的1514种语言中,有1418种语言均归大西洋-刚果语族。大西洋-刚果语族有与尼
  • 分子生物分子生物学(Molecular biology)广义的定义是从分子的面向对生物现象的研究;狭义的定义是从基因结构和功能的分子层面研究。这是一门从遗传学和生物化学衍生而来的学科。分子生
  • 苏胥如塔妙闻(梵语:सुश्रुत,音译为苏胥如塔、苏士鲁塔)仙人,生活于约前7世纪到前6世纪的古印度外科医生,阿育吠陀学者,《妙闻本集(印地语:सुश्रुत संहिता)》的主要作者。
  • 伊朗航天局伊朗航天局(波斯语:سازمان فضایی ایران‎,英语:the Iranian Space Agency,缩写:IRISA 或 ISA)是伊朗的公共民用航天机构,于2004年2月1日在首都德黑兰组建,航天局局长
  • 杜鹃花科杜鹃花科(学名:Ericaceae)为双子叶植物纲植物,约有75属1350余种,中国共有20属700余种。台湾有12属46种。杜鹃花科的模式属是欧石楠属(Erica)。常见杜鹃花科植物包括有杜鹃花、马醉