✍ dations ◷ 2025-11-18 07:02:57 #圆
圆 (英语:Circle),根据欧几里得的《几何原本》定义,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:“平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。”古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 古代埃及人认为:圆,是神赐给人的神圣图形。一直到两千多年前中国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。圆是在同一平面内到定点的距离等于定长的点的集合,这个定点叫做圆的圆心(通常用 O {displaystyle O} 表示)。圆周上任何两点相连的线段称为圆的弦(英语:chord)。如图2, A {displaystyle A} 、 B {displaystyle B} 分别为圆上任意两点,那么 A B ¯ {displaystyle {overline {AB}}} 就是圆的弦圆周上任意两点间的部分叫做弧(英语:arc),通常用符号 ⌢ {displaystyle frown } 表示。弧分为半圆、优弧、劣弧三种。假如一条直线与圆相交仅有一个交点,那么称这条直线是这个圆的切线,与圆相交的点叫做切点。如如下图,直线 Q P ¯ {displaystyle {overline {QP}}} 与圆只有一个交点 P {displaystyle P} ,那么 Q P ¯ {displaystyle {overline {QP}}} 就是圆的切线。 过圆上一点的切线:设该点为 P ( x o , y o ) {displaystyle P(x_{o},y_{o})} ,圆的方程为 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} ,则圆在该点的切线方程为: ( x o − a ) ( x − a ) + ( y o − b ) ( y − b ) = r 2 {displaystyle (x_{o}-a)(x-a)+(y_{o}-b)(y-b)=r^{2}}一条直线与一条弧线有两个公共点,这条直线是这条曲线的割线(英语:Secant Theorem)。如图,直线 Q O ¯ {displaystyle {overline {QO}}} 与圆有两个公共点,那么直线 Q O ¯ {displaystyle {overline {QO}}} 就是圆的割线。圆的一周的长度称为圆的周长(记作 C {displaystyle C} )。圆的周长与半径的关系是:其中 π {displaystyle pi } 是圆周率。圆的面积与半径的关系是: A = π r 2 {displaystyle A=pi r^{2}} 。圆既是轴对称图形又是中心对称图形,圆的对称轴为经过圆心 O {displaystyle O} 的任意直线,圆的对称中心为圆心 O {displaystyle O}同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等,此定理也称“一推三定理”。圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 如上图, M {displaystyle M} 为圆心, A , B , C {displaystyle A,B,C} 分别为圆周上的点,那么: ∠ A M B = 2 ∠ A C B {displaystyle angle AMB=2;angle ACB}圆周角定理的推论:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。如图,直径 B E ¯ ⊥ {displaystyle {overline {BE}}perp } 弦 A C ¯ {displaystyle {overline {AC}}} ,那么 B E ¯ {displaystyle {overline {BE}}} 平分 A C ¯ {displaystyle {overline {AC}}} 且平分 A C ⌢ {displaystyle {overset {frown }{AC}}}两个不同大小的圆(半径分别为 r {displaystyle r} 及 R {displaystyle R} ,圆心距为 d {displaystyle d} ,其中 r < R {displaystyle r<R} )之间的关系如下:在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。例如求半径到直线距离的方程就可以叫圆系方程。 在方程 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} 中,若圆心 ( a , b ) {displaystyle (a,b)} 为定点, r {displaystyle r} 为参变数,则它表示同心圆的圆系方程.若 r {displaystyle r} 是常量, a {displaystyle a} (或 b {displaystyle b} )为参变数,则它表示半径相同,圆心在同一直线上(平行于 x {displaystyle x} 轴或 y {displaystyle y} 轴)的圆系方程.截面为圆的三维形状有:

相关

  • 心房扑动心房扑动(Atrial Flutter),源自心房异位节律点,每分钟约发出激动波250~350个。其特征为P波外型相似且快速地出现,且呈锯齿状。因为这种激动波是源自于异位节律点,故称之为扑动波
  • 爱琴海坐标:39°15′34″N 24°57′09″E / 39.25944°N 24.95250°E / 39.25944; 24.95250爱琴海(希腊语:Αιγαίο Πέλαγος,土耳其语:Ege Denizi)是地中海的一部分,位于巴尔
  • 河可以有以下多种意思:
  • 约翰·彭德里约翰·布赖恩·彭德里爵士(英语:Sir John Brian Pendry,1943年7月4日-),英国理论物理学家,以研究折射率和发明首个实用性的隐形斗篷而闻名,目前在伦敦帝国学院担任理论固体物理教授
  • Nasub2/subSe硒化钠是一种无机化合物,由硒和钠,为一种氢硒酸盐,其化学式为Na2Se。可用硫化钠的制法,因为它们都是同族化物,具有类似性质,可由钠和硒在氨中或萘的存在下于四氢呋喃中反应即生成
  • 肾上腺酸肾上腺酸(英语:Adrenic acid),又称二十二碳四烯酸(英语:Docosatetraenoic acid),化学式为C22H36O2。肾上腺酸是一种有22个碳原子组成的长链不饱和脂肪酸,在长链中有四个不饱和键。肾
  • 拉娜·特纳拉娜·特纳(英语:Lana turner,1921年2月8日-1995年6月29日),本名为茱莉娅·简·特纳(Julia Jean Turner),生于爱达荷州华莱士,美国女演员,在她近50年的职业生涯中,她既是一名女性模特,也
  • Dickinsonia狄更逊水母(学名:Dickinsonia)又名狄更逊蠕虫、迪金索尼亚虫,是埃迪卡拉纪时代埃迪卡拉生物群中最具标志性的一种生物。其分类地位还不是很明朗,多数研究者认为它是动物,但也有人
  • span class=nowrapPbsub3/sub(POsub4/sub)sub&g磷酸铅,是一种有毒的铅化合物,尽管目前仍是人类可疑致癌物,但EPA对动物进行的测试已认定其是动物致癌物。 当加热时,该化合物分解,生成有毒的铅和磷的氧化物。磷酸铅可通过呼吸道
  • 江原江原道(韩语:강원도)位于朝鲜半岛的中东部,横跨朝韩分界线,是历史上的朝鲜八道之一,早于1395年时已被朝鲜王朝划分,名称是取自江陵(강릉)和原州(원주)。自从第二次世界大战南北分治后,江