✍ dations ◷ 2025-04-02 16:59:47 #圆
圆 (英语:Circle),根据欧几里得的《几何原本》定义,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:“平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。”古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 古代埃及人认为:圆,是神赐给人的神圣图形。一直到两千多年前中国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。圆是在同一平面内到定点的距离等于定长的点的集合,这个定点叫做圆的圆心(通常用 O {displaystyle O} 表示)。圆周上任何两点相连的线段称为圆的弦(英语:chord)。如图2, A {displaystyle A} 、 B {displaystyle B} 分别为圆上任意两点,那么 A B ¯ {displaystyle {overline {AB}}} 就是圆的弦圆周上任意两点间的部分叫做弧(英语:arc),通常用符号 ⌢ {displaystyle frown } 表示。弧分为半圆、优弧、劣弧三种。假如一条直线与圆相交仅有一个交点,那么称这条直线是这个圆的切线,与圆相交的点叫做切点。如如下图,直线 Q P ¯ {displaystyle {overline {QP}}} 与圆只有一个交点 P {displaystyle P} ,那么 Q P ¯ {displaystyle {overline {QP}}} 就是圆的切线。 过圆上一点的切线:设该点为 P ( x o , y o ) {displaystyle P(x_{o},y_{o})} ,圆的方程为 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} ,则圆在该点的切线方程为: ( x o − a ) ( x − a ) + ( y o − b ) ( y − b ) = r 2 {displaystyle (x_{o}-a)(x-a)+(y_{o}-b)(y-b)=r^{2}}一条直线与一条弧线有两个公共点,这条直线是这条曲线的割线(英语:Secant Theorem)。如图,直线 Q O ¯ {displaystyle {overline {QO}}} 与圆有两个公共点,那么直线 Q O ¯ {displaystyle {overline {QO}}} 就是圆的割线。圆的一周的长度称为圆的周长(记作 C {displaystyle C} )。圆的周长与半径的关系是:其中 π {displaystyle pi } 是圆周率。圆的面积与半径的关系是: A = π r 2 {displaystyle A=pi r^{2}} 。圆既是轴对称图形又是中心对称图形,圆的对称轴为经过圆心 O {displaystyle O} 的任意直线,圆的对称中心为圆心 O {displaystyle O}同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等,此定理也称“一推三定理”。圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 如上图, M {displaystyle M} 为圆心, A , B , C {displaystyle A,B,C} 分别为圆周上的点,那么: ∠ A M B = 2 ∠ A C B {displaystyle angle AMB=2;angle ACB}圆周角定理的推论:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。如图,直径 B E ¯ ⊥ {displaystyle {overline {BE}}perp } 弦 A C ¯ {displaystyle {overline {AC}}} ,那么 B E ¯ {displaystyle {overline {BE}}} 平分 A C ¯ {displaystyle {overline {AC}}} 且平分 A C ⌢ {displaystyle {overset {frown }{AC}}}两个不同大小的圆(半径分别为 r {displaystyle r} 及 R {displaystyle R} ,圆心距为 d {displaystyle d} ,其中 r < R {displaystyle r<R} )之间的关系如下:在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。例如求半径到直线距离的方程就可以叫圆系方程。 在方程 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} 中,若圆心 ( a , b ) {displaystyle (a,b)} 为定点, r {displaystyle r} 为参变数,则它表示同心圆的圆系方程.若 r {displaystyle r} 是常量, a {displaystyle a} (或 b {displaystyle b} )为参变数,则它表示半径相同,圆心在同一直线上(平行于 x {displaystyle x} 轴或 y {displaystyle y} 轴)的圆系方程.截面为圆的三维形状有:

相关

  • 神经外科手术人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学神经外科,也常称作脑外科,是外科的一个
  • 两栖攻击舰两栖攻击舰(英语:Amphibious assault ship),亦称两栖突击舰、强袭登陆舰(源自其日语名称“強襲揚陸艦”),是一种用来在敌方沿海地区进行两栖作战时,在战线后方提供空中与水面支援的
  • 荷兰病荷兰病(荷语:Hollandse ziekte)是一个和自然资源与经济发展相关的术语。是指由于出口自然资源,导致货币汇率上升,因而工业出口减少、国内制造业衰退的现象。在经济学中,荷兰病是特
  • 科菲·安南科菲·阿塔·安南(英语:Kofi Atta Annan,1938年4月8日-2018年8月18日),是加纳库马西人,曾任联合国第七任秘书长,并于2001年被授予诺贝尔和平奖。科菲·安南是双胞胎之一,孪生的姐姐在
  • 内政部户政司内政部户政司(简称户政司)是中华民国内政部下属一个业务机关。户籍行政科国籍行政科户口调查科人口政策科户籍作业科户政人员培训科
  • 莺歌区坐标:24°57′21″N 121°21′18″E / 24.955707°N 121.3548809°E / 24.955707; 121.3548809莺歌区是台湾新北市下的一个市辖区,因为境内盛产窑土,因此陶瓷制造工业发达。莺
  • 雨量计雨量计(或量雨计、测雨计)是一种气象学家和水文学家用来测量一段时间内某地区的降水量的仪器(降雪量的测量则需要使用雪量计)。大部分的雨量计都是以毫米作为测量单位,有时候测量
  • 加斯科涅加斯科涅(法语:Gascogne;奥克语:Gasconha,发音:)指法国西南部的一个地区,位于今阿基坦大区及南部-比利牛斯大区。在被罗马人征服以前,加斯科涅的居民是阿基坦人(英语:Aquitani),他们说的
  • 高剂量避孕药亚兹佩避孕法(英语:Yuzpe regimen)是一种使用炔雌醇(英语:Ethinyl estradiol)和左炔诺孕酮的紧急避孕方法。与单次大剂量左炔诺孕酮、 单次醋酸乌利司他(英语:Ulipristal acetate)、
  • 滕尼斯斐迪南·滕尼斯(德语:Ferdinand Tönnies,1855年7月26日-1936年4月9日),德国社会学家,著作有《共同体与社会》、《新时代精神》。