✍ dations ◷ 2025-12-08 21:59:22 #圆
圆 (英语:Circle),根据欧几里得的《几何原本》定义,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:“平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。”古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 古代埃及人认为:圆,是神赐给人的神圣图形。一直到两千多年前中国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。圆是在同一平面内到定点的距离等于定长的点的集合,这个定点叫做圆的圆心(通常用 O {displaystyle O} 表示)。圆周上任何两点相连的线段称为圆的弦(英语:chord)。如图2, A {displaystyle A} 、 B {displaystyle B} 分别为圆上任意两点,那么 A B ¯ {displaystyle {overline {AB}}} 就是圆的弦圆周上任意两点间的部分叫做弧(英语:arc),通常用符号 ⌢ {displaystyle frown } 表示。弧分为半圆、优弧、劣弧三种。假如一条直线与圆相交仅有一个交点,那么称这条直线是这个圆的切线,与圆相交的点叫做切点。如如下图,直线 Q P ¯ {displaystyle {overline {QP}}} 与圆只有一个交点 P {displaystyle P} ,那么 Q P ¯ {displaystyle {overline {QP}}} 就是圆的切线。 过圆上一点的切线:设该点为 P ( x o , y o ) {displaystyle P(x_{o},y_{o})} ,圆的方程为 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} ,则圆在该点的切线方程为: ( x o − a ) ( x − a ) + ( y o − b ) ( y − b ) = r 2 {displaystyle (x_{o}-a)(x-a)+(y_{o}-b)(y-b)=r^{2}}一条直线与一条弧线有两个公共点,这条直线是这条曲线的割线(英语:Secant Theorem)。如图,直线 Q O ¯ {displaystyle {overline {QO}}} 与圆有两个公共点,那么直线 Q O ¯ {displaystyle {overline {QO}}} 就是圆的割线。圆的一周的长度称为圆的周长(记作 C {displaystyle C} )。圆的周长与半径的关系是:其中 π {displaystyle pi } 是圆周率。圆的面积与半径的关系是: A = π r 2 {displaystyle A=pi r^{2}} 。圆既是轴对称图形又是中心对称图形,圆的对称轴为经过圆心 O {displaystyle O} 的任意直线,圆的对称中心为圆心 O {displaystyle O}同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等,此定理也称“一推三定理”。圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 如上图, M {displaystyle M} 为圆心, A , B , C {displaystyle A,B,C} 分别为圆周上的点,那么: ∠ A M B = 2 ∠ A C B {displaystyle angle AMB=2;angle ACB}圆周角定理的推论:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。如图,直径 B E ¯ ⊥ {displaystyle {overline {BE}}perp } 弦 A C ¯ {displaystyle {overline {AC}}} ,那么 B E ¯ {displaystyle {overline {BE}}} 平分 A C ¯ {displaystyle {overline {AC}}} 且平分 A C ⌢ {displaystyle {overset {frown }{AC}}}两个不同大小的圆(半径分别为 r {displaystyle r} 及 R {displaystyle R} ,圆心距为 d {displaystyle d} ,其中 r < R {displaystyle r<R} )之间的关系如下:在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。例如求半径到直线距离的方程就可以叫圆系方程。 在方程 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} 中,若圆心 ( a , b ) {displaystyle (a,b)} 为定点, r {displaystyle r} 为参变数,则它表示同心圆的圆系方程.若 r {displaystyle r} 是常量, a {displaystyle a} (或 b {displaystyle b} )为参变数,则它表示半径相同,圆心在同一直线上(平行于 x {displaystyle x} 轴或 y {displaystyle y} 轴)的圆系方程.截面为圆的三维形状有:

相关

  • 年度风云人物时代杂志年度风云人物(英语:Time Person of the Year)是美国《时代》于每年年底评选出的当年度对世界最具有影响力的事物。获选对象可以是个人、夫妇、一群人、概念、地方甚至
  • 单氯丙二醇3-氯-1,2-丙二醇(3-MCPD),分子式C3H7ClO2。无色、有愉快性气味的吸湿性液体,放置后逐渐转变为微带绿色的黄色液体。溶于水、乙醇、乙醚、丙酮,微溶于甲苯,不溶于四氯化碳、苯和石
  • 生物反应器生物反应器(英语:Bioreactor)是指任何提供生物化学反应的适当环境或工程设备。通常是指利用酶(由一个或一群酵素所推动)或生物体(如微生物)使装置具有模拟生物的功能,可在细胞外进
  • 藓类植物藓纲(学名:Bryopsida)在生物分类学上是苔藓植物门(Bryophyta)中的一个纲。它是苔藓植物门中最大的一纲,包含95%的全部的藓纲物种。它约有15,000种。中国约有500余种。本纲可分为三
  • 山梨县山梨县(日语:山梨県/やまなしけん Yamanashi ken */?)是日本本州中部地方的一个县,相当于过去的甲斐国,首府是甲府市。向东是东京都和神奈川县,离东京市区约120公里,向南是静冈县,
  • 产品产品 · 定价 · 分销 服务 · 零售 · 宣传 品牌管理 · 大客户营销 营销道德 · 营销效果 营销调查 · 市场调查 市场划分 · 营销战略 市场优势 · 操
  • 旅行限制因2019冠状病毒病疫情,许多国家和地区对疫情最严重地区的公民或游客实施了隔离和/或入境禁令。加上旅游意愿下降,这些限制对相关国家的旅游业造成了负面的经济影响,对这些地区
  • 1400年重要事件及趋势重要人物
  • 肇祖原皇帝猛哥帖木儿,又名猛哥帖木耳、猛加帖木儿、都督孟特穆(满语:ᡩᡠᡩᡠ ᠮᡝᡢᡨᡝ᠋ᠮᡠ,转写:dudu mengtemu,1370年-1433年),爱新觉罗氏,明朝建州女真人,元代斡朵里部首领。1388年,明太祖
  • 傅山傅山(1607年8月11日-1684年7月25日),本名鼎臣,字青竹,后改名山,更字青主,以字行,号公之它、公它、真山、朱衣道人、石道人、啬庐、侨黄、侨松等等。明末清初山西阳曲人(今山西省太原市