首页 >
薄透镜
✍ dations ◷ 2025-11-21 18:24:03 #薄透镜
薄透镜,在光学中,是指透镜的厚度(穿过光轴的两个镜子表面的距离)与焦距的长度比较时,可以被忽略不计的透镜。厚度不能被忽略的透镜称为厚透镜。薄透镜有两个球面组成,第一曲面的曲率半径=R1,第二球面的曲率半径=R2;在第一球面面左边的介质(空气)的折射系数=N1=1,透镜材料的折射系数=N2,透镜右边介质(空气)的折射系数=N3=1。物距=-L1,像距=L3。根据球面折射的近轴近似,第一球面服从下列折射方程第二球面服从下列折射方程两式相加得:对一个薄透镜,物距(
D
{displaystyle D}
)和像距(
d
{displaystyle d}
)的近轴近似关系式是:。当物距趋向无穷大,即D→∝
1
s
{displaystyle {1 over s}}
→0上式化为:定义 f为 物距在无穷大时的像距 f:= d(当s→∝)于是f
{displaystyle f}
称为薄透镜焦距。其中N是薄透镜的材料折射率,R1,R2是球面的半径,半径的方向和光轴相同为正号,反之为负号。f >0的透镜称为凸透镜,f <0的透镜称为凹透镜。焦距的倒数 称为透镜的焦度,或屈光度,用Φ表示所谓近轴近似指光线在透镜上的入射角i很小,因此折射定律中的正弦sin(i)≈i。当光线的入射角的正弦不可用角度代替时,上述薄透镜公式不成立。由薄透镜公式D
∗
d
=
f
∗
(
D
+
d
)
{displaystyle D*d=f*(D+d)}D
∗
d
−
f
∗
D
−
f
∗
d
=
0
{displaystyle D*d-f*D-f*d=0}在等式两边各加
f
2
{displaystyle f^{2}}D
∗
d
−
f
∗
D
−
f
∗
d
+
f
2
=
f
2
{displaystyle D*d-f*D-f*d+f^{2}=f^{2}}由此可得薄透镜的牛顿公式(
D
−
f
)
∗
(
d
−
f
)
=
f
2
{displaystyle (D-f)*(d-f)=f^{2}}倍率,物理中称“放大率”,是指像高与物高之比,再取负值。令M代表倍率:M
=
H
h
=
D
d
{displaystyle M={frac {H}{h}}={frac {D}{d}}}其中 H为物高,h为像高,D为物距,d 为像距由牛顿公式
D
∗
d
=
f
∗
(
D
+
d
)
{displaystyle D*d=f*(D+d)}
代人
D
=
M
d
{displaystyle D=Md}
得D
=
f
∗
(
M
+
1
)
{displaystyle D=f*(M+1)}d
=
M
+
1
M
f
{displaystyle d={frac {M+1}{M}}f}在微距摄影中,当物高=像高,即M=1时D
=
d
=
2
f
{displaystyle D=d=2f}即物距=像距=镜头焦距的2倍薄透镜公式中令 c1=
1
R
1
{displaystyle {1 over R1}}
代表透镜第一球面的曲率令 c2=
1
R
2
{displaystyle {1 over R2}}
代表透镜第二球面的曲率则
1
f
=
(
N
−
1
)
∗
(
c
1
−
c
2
)
=
(
N
−
1
)
∗
c
{displaystyle {frac {1}{f}}=(N-1)*(c1-c2)=(N-1)*c}其中c =c1-c2代表透镜的总曲率。由上式可见,显然薄透镜的焦距只和透镜的总曲率有关;因此,可以改变两个曲面的曲率,而仍然保持镜头的焦距不变:即
1
f
=
(
N
−
1
)
∗
(
c
1
−
c
2
)
=
(
N
−
1
)
∗
(
(
c
1
+
k
)
−
(
c
2
+
k
)
)
=
(
N
−
1
)
∗
c
{displaystyle {frac {1}{f}}=(N-1)*(c1-c2)=(N-1)*((c1+k)-(c2+k))=(N-1)*c}第一曲面的曲率c1增加k,第二曲面的曲率也增加k,镜头的总曲率不变,镜头的焦距不变。这种同步改变薄透镜的两个球面的曲率而维持透镜焦距的技术,称为镜片弯曲术,是镜头设计时在保障焦距不变的条件下调控像差的强有力的手段之一。令 X=
r
2
+
r
1
r
2
−
r
1
=
c
1
+
c
2
c
1
−
c
2
{displaystyle {frac {r_{2}+r_{1}}{r_{2}-r_{1}}}={frac {c_{1}+c_{2}}{c_{1}-c_{2}}}}
。一个薄透镜,如果第一曲面是球面,第二面是平面,则X=1,如第一面是平面,第二面是球面则X =-1,双凸透镜X=0>。两个同光轴薄透镜,其焦度分别为
p
1
{displaystyle p_{1}}
,
p
2
{displaystyle p_{2}}
,间距为d,则两个薄透镜组和的焦度为p
=
p
1
+
p
2
−
d
∗
p
1
∗
p
2
{displaystyle p=p_{1}+p_{2}-d*p_{1}*p_{2}}当两个同光轴薄透镜十分靠近,d≈0;则组和的焦度为两透镜焦度之和:p
=
p
1
+
p
2
{displaystyle p=p_{1}+p_{2}}
相关
- 芽生菌病芽生菌病(英语:Blastomycosis),也被称为北美芽生菌病(英语:North American blastomycosis)、芽生菌性皮炎(英语:Blastomycetic dermatitis)、吉克力斯氏病(英语:Gilchrist's disease),一种
- 丹麦语丹麦 格陵兰 法罗群岛 欧盟北欧理事会丹麦语(dansk, dansk 帮助·信息,宽式IPA:/d̥ænsɡ̊/),中文也称丹麦文,属于印欧语系-日尔曼语族-北日尔曼语支,通行于丹麦王国以及其属地
- KBS韩国广播公司(朝鲜语:한국방송공사/韓國放送公社 Han-guk Bangsong Gongsa,英语:Korean Broadcasting System),通称韩国放送(英语:KBS),亦可称为韩国广播电视台,为大韩民国最早的公营电
- 运动协调运动协调是为了达到某些运动的(如方位)、运动机能(英语:Kinesiology)(如力量)的参数而产生的一致动作。运动协调一般是平稳且高效的。
- 冶金学冶金学(英语:metallurgy)属于材料科学,是研究从矿石中提取金属,并用各种加工方法制成具有一定性能的金属材料的学科。冶金学也研究金属、金属互化物或其混合物(称为合金)的物理及化
- 西伊比利亚语支西伊比利亚语支(West Iberian)是伊比利亚罗曼语支下属的一个人分支,包括阿拉贡语、西班牙语、拉迪诺语、阿斯图里亚斯-莱昂语、加利西亚-葡萄牙语等语言。西伊比利亚语支在12世
- S02A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码S02(耳科用药)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collaborat
- 日本温泉列表日本温泉一览是依照《温泉法》,将日本的温泉地点依照各都道府县列出的一览表。按日本图例,温泉在日本的地图上常用温泉记号(♨)标示。北海道 青森县 | 岩手县 | 宫城县 | 秋田
- 维纳斯的诞生《维纳斯的诞生》是意大利文艺复兴时期画家桑德罗·波提切利最著名的作品之一,这件作品根据波利齐安诺的长诗吉奥斯特纳而作,描述罗马神话中女神维纳斯从海中诞生的情景:她赤裸
- 宇宙形成的前20分钟宇宙年代学,或宇宙年表依据大爆炸之宇宙论描述宇宙的历史和未来,目前的宇宙如何由普朗克时期随着时间演化的科学模式,使用宇宙的共动坐标系时间参数。宇宙膨胀的模型即是所知的
