薄透镜

✍ dations ◷ 2025-05-16 23:55:13 #薄透镜
薄透镜,在光学中,是指透镜的厚度(穿过光轴的两个镜子表面的距离)与焦距的长度比较时,可以被忽略不计的透镜。厚度不能被忽略的透镜称为厚透镜。薄透镜有两个球面组成,第一曲面的曲率半径=R1,第二球面的曲率半径=R2;在第一球面面左边的介质(空气)的折射系数=N1=1,透镜材料的折射系数=N2,透镜右边介质(空气)的折射系数=N3=1。物距=-L1,像距=L3。根据球面折射的近轴近似,第一球面服从下列折射方程第二球面服从下列折射方程两式相加得:对一个薄透镜,物距( D {displaystyle D} )和像距( d {displaystyle d} )的近轴近似关系式是:。当物距趋向无穷大,即D→∝ 1 s {displaystyle {1 over s}} →0上式化为:定义 f为 物距在无穷大时的像距 f:= d(当s→∝)于是f {displaystyle f} 称为薄透镜焦距。其中N是薄透镜的材料折射率,R1,R2是球面的半径,半径的方向和光轴相同为正号,反之为负号。f >0的透镜称为凸透镜,f <0的透镜称为凹透镜。焦距的倒数 称为透镜的焦度,或屈光度,用Φ表示所谓近轴近似指光线在透镜上的入射角i很小,因此折射定律中的正弦sin(i)≈i。当光线的入射角的正弦不可用角度代替时,上述薄透镜公式不成立。由薄透镜公式D ∗ d = f ∗ ( D + d ) {displaystyle D*d=f*(D+d)}D ∗ d − f ∗ D − f ∗ d = 0 {displaystyle D*d-f*D-f*d=0}在等式两边各加 f 2 {displaystyle f^{2}}D ∗ d − f ∗ D − f ∗ d + f 2 = f 2 {displaystyle D*d-f*D-f*d+f^{2}=f^{2}}由此可得薄透镜的牛顿公式( D − f ) ∗ ( d − f ) = f 2 {displaystyle (D-f)*(d-f)=f^{2}}倍率,物理中称“放大率”,是指像高与物高之比,再取负值。令M代表倍率:M = H h = D d {displaystyle M={frac {H}{h}}={frac {D}{d}}}其中 H为物高,h为像高,D为物距,d 为像距由牛顿公式 D ∗ d = f ∗ ( D + d ) {displaystyle D*d=f*(D+d)} 代人 D = M d {displaystyle D=Md} 得D = f ∗ ( M + 1 ) {displaystyle D=f*(M+1)}d = M + 1 M f {displaystyle d={frac {M+1}{M}}f}在微距摄影中,当物高=像高,即M=1时D = d = 2 f {displaystyle D=d=2f}即物距=像距=镜头焦距的2倍薄透镜公式中令 c1= 1 R 1 {displaystyle {1 over R1}} 代表透镜第一球面的曲率令 c2= 1 R 2 {displaystyle {1 over R2}} 代表透镜第二球面的曲率则 1 f = ( N − 1 ) ∗ ( c 1 − c 2 ) = ( N − 1 ) ∗ c {displaystyle {frac {1}{f}}=(N-1)*(c1-c2)=(N-1)*c}其中c =c1-c2代表透镜的总曲率。由上式可见,显然薄透镜的焦距只和透镜的总曲率有关;因此,可以改变两个曲面的曲率,而仍然保持镜头的焦距不变:即 1 f = ( N − 1 ) ∗ ( c 1 − c 2 ) = ( N − 1 ) ∗ ( ( c 1 + k ) − ( c 2 + k ) ) = ( N − 1 ) ∗ c {displaystyle {frac {1}{f}}=(N-1)*(c1-c2)=(N-1)*((c1+k)-(c2+k))=(N-1)*c}第一曲面的曲率c1增加k,第二曲面的曲率也增加k,镜头的总曲率不变,镜头的焦距不变。这种同步改变薄透镜的两个球面的曲率而维持透镜焦距的技术,称为镜片弯曲术,是镜头设计时在保障焦距不变的条件下调控像差的强有力的手段之一。令 X= r 2 + r 1 r 2 − r 1 = c 1 + c 2 c 1 − c 2 {displaystyle {frac {r_{2}+r_{1}}{r_{2}-r_{1}}}={frac {c_{1}+c_{2}}{c_{1}-c_{2}}}} 。一个薄透镜,如果第一曲面是球面,第二面是平面,则X=1,如第一面是平面,第二面是球面则X =-1,双凸透镜X=0>。两个同光轴薄透镜,其焦度分别为 p 1 {displaystyle p_{1}} , p 2 {displaystyle p_{2}} ,间距为d,则两个薄透镜组和的焦度为p = p 1 + p 2 − d ∗ p 1 ∗ p 2 {displaystyle p=p_{1}+p_{2}-d*p_{1}*p_{2}}当两个同光轴薄透镜十分靠近,d≈0;则组和的焦度为两透镜焦度之和:p = p 1 + p 2 {displaystyle p=p_{1}+p_{2}}

相关

  • 绿非硫细菌绿弯菌门(Chloroflexi)是一类通过光合作用产生能量的细菌,又称作绿非硫细菌,尽管还有一部分称作热微菌的细菌也属于绿非硫细菌。它们具有绿色的色素,包括作为反应中心的菌绿素a和
  • 阿米巴变形虫,拉丁文为Amoeba,中文音译为阿米巴,所以也叫做阿米巴原虫、阿米巴变形虫或阿米巴虫或称食脑虫(透过感染鼻腔而进入脑部感染的死亡率高达九成)。是一种单细胞原生动物,仅由一
  • 软组织软组织是连接、支撑、包裹其他身体器官的一种组织,相对概念是骨头等“硬组织”。它包括肌腱、韧带、筋膜、皮肤、结缔组织、脂肪、滑膜、肌肉、一些神经和血管。此概念覆盖面
  • Oxford Dictionary of National Biography牛津国家人物传记大辞典(Oxford Dictionary of National Biography),牛津大学出版社出版, 收录记载了58,000多位英国历史名人传记,是重要的英国人物传记参考工具书。原称“国家人
  • 奥尔堡自治市奥尔堡自治市(丹麦语:Aalborg Kommune)是丹麦的一个自治市,位于日德兰半岛北部,属北日德兰大区。面积1,133.99平方公里,2009年人口196,292人。首府奥尔堡。2007年由原奥尔堡自治市
  • 帕纳雷阿岛帕纳雷阿岛(Panarea)是西西里岛以北的火山岛岛链,伊奥利亚群岛8个岛中面积第2小的岛屿(仅大于巴西卢佐岛)。岛上常住人口约280人,但是在夏季,随着游客大量涌入,人口会戏剧性增长。近
  • 线性逻辑在数理逻辑中,线性逻辑是拒绝“弱化”和“收缩”的结构规则的一种亚结构逻辑。对此解释是“假设是资源”:在证明中所有假设必须被消费“精确一次”。这区别于平常的逻辑比如
  • 万用表万用表(英语:multimeter),是一种多用途电子测量仪器,主要用于物理、电气、电子等测量领域,一般包含电流表(安培计)、电压表(伏特计)、电阻表(欧姆计)等功能,也称为万用计、多用计、
  • 马尾藻约250种。马尾藻,是马尾藻科马尾藻属一类褐藻的总称,现约包括250个种。藻体分固着器、茎、叶、气囊四部分,雌雄同株或异株;成熟时在叶腋长出生殖托。马尾藻生长于中、低潮间带的
  • 果皮果皮,又简称皮,是指水果或蔬菜外侧一层可以取下的部分,这个外层通常可以徒手剥开或用削皮刀切下,如果比较硬或难以用手取下,通常称为果壳。果皮的厚度因果实而异,西瓜的果皮相对而