首页 >
座标时
✍ dations ◷ 2025-04-02 17:55:06 #座标时
相对论中,利用时空坐标系表达计算结果很方便。这里的时空坐标系隐含了“假想每个时空点都有观察者”的意义。在许多(但不是全部)坐标系中,发生于某一瞬间、某一地点的事件可由一个时间坐标和三个空间坐标标定。论述由时间坐标标定的时间时,人们通常会用坐标时这个名词,以强调他们谈论的对象不是固有时。依惯例,狭义相对论中惯性观察者所观测到的事件的坐标时和固有时相同。这里的固有时是与事件处于同一位置的时钟读值。对观察者而言,该时钟看起来静止不动,并已使用爱因斯坦同步约定(英语:Einstein synchronisation)校正过,与观察者的时钟同步。广义相对论排除了许多经典力学的假设以及经典理论描述时空所用到的假设,因此必须在理论框架下严谨定义同步(synchronization)和同时性(simultaneity)相关的其他概念。爱因斯坦定义了特定的时钟同步程序(英语:Einstein synchronisation),有限同时性的概念因而产生。:82两个事件只有在选定的坐标时具有相同值的时候,才会称为“在选定的参考系同时(simultaneous)”。这也表示,它们在其他参考系之下可能不会同时。:955:82在名义上定义参考系的地方摆一个时钟,无法测量该参考系的坐标时:位在太阳系质心的时钟无法量到质心坐标系的坐标时(英语:Barycentric Coordinate Time);放在地心的时钟也无法量到地心系的坐标时(英语:Geocentric Coordinate Time)。:954根据广义相对论,处在非惯性系的观察者可以更自由地选择坐标系。对一个空间坐标为定值的时钟,固有时
τ
{displaystyle tau }
(希腊字母小写的tau)和坐标时
t
{displaystyle t}
的关系如下(以时间膨胀率为例):d
τ
d
t
=
−
g
00
{displaystyle {frac {dtau }{dt}}={sqrt {-g_{00}}}}(1)在此,
g
00
{displaystyle g_{00}}
为度量张量的分量,体现了引力时间膨胀(依惯例,第零个分量类时)。另一种列式方式列出含有
1
c
2
{displaystyle {frac {1}{c^{2}}}}
的(二次)修正项,使固有时和坐标时的关系能以力学上更容易辨认的量表达。:36d
τ
d
t
=
1
−
U
c
2
−
v
2
2
c
2
{displaystyle {frac {dtau }{dt}}=1-{frac {U}{c^{2}}}-{frac {v^{2}}{2c^{2}}}}(2)其中:为周围物体(质量)引起的重力位的总和,
r
i
{displaystyle r_{i}}
为各物体离时钟的距离。
G
M
i
r
i
{displaystyle {frac {GM_{i}}{r_{i}}}}
的和是牛顿重力位(加上欲考虑进来的潮汐位)的和的近似值,因天文上的惯例而使用正号表达。此外,
c
{displaystyle c}
为光速,
v
{displaystyle v}
为所选的参考系坐标的时钟移动的速率:v
2
=
(
d
x
2
+
d
y
2
+
d
z
2
)
/
(
d
t
c
)
2
{displaystyle v^{2}=(dx^{2}+dy^{2}+dz^{2})/(dt_{c})^{2}}(3)其中,
d
x
,
d
y
,
d
z
,
d
t
c
{displaystyle dx,dy,dz,dt_{c}}
为时钟所在参考系中位置的空间坐标(
x
,
y
,
z
{displaystyle x,y,z}
)和坐标时(
t
c
{displaystyle t_{c}}
)的微小增量。
x
,
y
,
z
{displaystyle x,y,z}
三个类空坐标彼此正交。式 (2) 是基础的、引用很多的微分方程,表达了固有时和坐标时的关系。以史瓦西度规为起始的推导请参:重力和运动引起的时间膨胀。坐标时无法由测量而得,只能由计算得出。计算方式:读取真实时钟上的数值(固有时),代入式 (2) 或其他表达时间膨胀关系的式子得出。为了说明,可假想出时钟的固有时和坐标时刚好相符的观察者和其轨迹。要满足固有时和坐标时相符,必须使观察者和时钟在所选参考系处于静止状态(式 (2) 的
v
=
0
{displaystyle v=0}
),并无限远离(现实中无法达成的条件)参考系中的重力质量,使该系的重力位在观察者处的位置为零(式 (2) 的
U
=
0
{displaystyle U=0}
)。例如,对于质心坐标时(英语:Barycentric Coordinate Time),该观察者必须无限远离太阳系,使太阳系的重力位于他所在的地点消失;观察者相对于太阳系的质心也必须静止不动。这个说明用处有限,因为坐标时在参考系中的每一点都有定义,但为了说明而选择的假想观察者和时钟只有有限的轨迹可以选择。并且,这类假想观察者无法用来说明重力位不为零时的情况(如:处在太阳系内的情况)。另外,在某些参考系找不到这类假想观察者。:955坐标时标是一种时间标准,设计给需要考虑坐标时相对论性效应的计算使用。选择时间坐标意味着选择了参考系。如上所述,时间坐标可以借由时钟的固有时进行有限程度的说明。该时钟理论上必须离研究者感兴趣的物体无限远,并且相对于所选参考系处于静止状态。名义上,这个时钟处于所有重力井(英语:gravity well)之外,因此不受重力时间膨胀影响。位于重力井内物体的固有时会过得比坐标时慢,即使它们相对于坐标参考系处于静止状态。观测所有物体都必须考虑到重力和运动引起的时间膨胀,而这些效应是“物体相对于参考系的速度”和式 (2) 给的“重力位”的函数。国际天文联会(IAU)定义了四种专门为天文学设计的坐标时标。质心坐标时(英语:Barycentric Coordinate Time)(TCB)基于和太阳系的质心一起移动的参考系,用于计算太阳系内的天体运动。从地球的观点来看,广义的时间膨胀(包含重力时间膨胀)使质心坐标时的时间单位(SI秒)过得比地球上时钟量得的还快。因此,为了天文上实用的目的,定义了质心坐标时的缩放版本,因历史原因称为质心力学时(英语:Barycentric Dynamical Time)(TDB)。质心力学时的时间单位从地球表面观测为SI秒,从而确保TDB和地球时(TT)在几千年内的误差会维持在2毫秒内。TDB的时间单位如果由前述的假想观察者测量(在参考系处于静止且处于无限远的距离之外)只会比SI秒慢一点点。地心坐标时(英语:Geocentric Coordinate Time)(TCG)定义为与地心(地球中心)一起移动的参考系,原则上用于地球上和地球内部的现象,如地球自转和卫星的运动。出于与定义TDB相同的原因(TCG的SI秒比地球表面时钟量得的SI秒稍快,虽然幅度和前者相比小得多),这里也定义了地球时(TT),为TCG的缩放版本,缩放比例使其在大地水准面的单位等于SI秒。
相关
- μm微米(Micrometer、㎛)是长度单位,符号µm。1微米相当于1米的一百万分之一(10-6,此即为“微”的字义)。此外,在ISO 2955的国际标准中,“u”已经被接纳为一个代替“μ”来代表10-6的国
- 理查·费曼理查德·菲利普斯·费曼, ForMemRS,英文名 Richard Philips Feynman ,(1918年5月11日-1988年2月15日),美国理论物理学家,以对量子力学的路径积分表述、量子电动力学、过冷液氦的超
- 维度维度,又称维数,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。0维是一点,没有长度。1维是线,只有长度。2维是一个平面,是由长度和宽度(或曲线)形成面积
- 卢比安纳卢布尔雅那(Ljubljana,斯洛文尼亚语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","G
- 2016年欧洲杯足球赛2016年欧洲足球锦标赛(英语:2016 UEFA European Championship),通称2016年欧洲杯(UEFA Euro 2016,英文简称Euro 2016),是第 15 届四年一度的欧洲足球锦标赛,由欧洲足联组织。比赛于20
- 苏尔斯顿约翰·爱德华·苏尔斯顿爵士,CH,FRS(英语:Sir John Edward Sulston,1942年3月27日-2018年3月6日),英国科学家,因发现器官发育和细胞程序性细胞死亡(细胞程序化凋亡)的遗传调控机理,与悉
- 眼屈光不正眼屈光不正(Refractive error),系指因眼球形状而让光无法成功聚焦在视网膜上的问题。常见的典型眼屈光不正有近视、远视、散光和老花眼等。近视是因为看远方物体会模糊不清楚,远
- 比较学宗教比较(或宗教比较学)是宗教学的一个分析世界上的各个宗教不同的观点和思想的解释的学科。这学科的范畴是根据对神话和灵性的研究,为要由宗教的隐喻取得主要的论点和在各种不
- 阿亚瓦芝阿亚瓦芝(Ayyavazhi)是一个宗教体系,19世纪中叶流行于印度,信奉者都是印度下层的人民,也有印度教教徒。Ayyavazhi是一句泰米尔语,意思是父之路。阿亚瓦芝是Awa Vaikundar说教传道
- NaClOsub3/sub氯酸钠(化学式:NaClO3)是一种氧化剂,为白色晶体,可溶于水。加热熔融300℃以上分解,放出氧气,为强氧化剂;对热不稳定,易潮解;与磷、硫及有机物相混,遇热、摩擦或撞击,容易引起燃烧或爆炸,