首页 >
余切
✍ dations ◷ 2025-10-29 05:35:13 #余切
余切(英语:Cotangent,一般记作
cot
{displaystyle cot }
,或者ctg)是三角函数的一种,是正切的余角函数。它的定义域是整个不等于
k
π
{displaystyle kpi }
的实数的集合,
k
{displaystyle k}
为整数,值域是整个实数集。它是周期函数,其最小正周期为
π
{displaystyle pi }
。余切函数是奇函数。余切函数在各个小区间上单独看为单调递减函数,和正切互为倒数,其函数图形和正切函数图形对称于
π
4
{displaystyle {frac {pi }{4}}}
;该函数不连续,有奇点
k
π
{displaystyle kpi }
,其中
k
{displaystyle k}
是一个整数。余切最早用符号tan.com表示,该符号同正切一样,最初由T.芬克使用。后来人们又逐渐将该符号简化为ctg,后来又改为cot,与现代符号完全相同。在直角三角形中,一个锐角的余切定义为它的邻边与对边的比值,也就是:可以发现其定义和正切函数互为倒数。设
α
{displaystyle alpha }
是平面直角坐标系xOy中的一个象限角,
P
(
x
,
y
)
{displaystyle Pleft({x,y}right)}
是角的终边上一点,
r
=
x
2
+
y
2
>
0
{displaystyle r={sqrt {x^{2}+y^{2}}}>0}
是P到原点O的距离,则α的正切定义为:图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角
θ
{displaystyle theta }
,并与单位圆相交,并令这个交点为y。另原点为O。做一直线,y点,垂直于
O
y
¯
{displaystyle {overline {Oy}}}
,并与单位圆相切,令直线与y轴的交点,则此点与y点之距离为余切比值。单位圆可以被认为是通过改变邻边和对边的长度,产生斜边等于 1 的无限数目个三角形的一种方式。对于大于
2
π
{displaystyle 2pi }
或小于
−
2
π
{displaystyle -2pi }
的角度,简单的继续绕单位圆旋转。在这种方式下,有些三角函数变成了周期为
2
π
{displaystyle 2pi }
的周期函数;但由于余切是切线,再绕单位圆旋转时,会出现周期是
π
{displaystyle pi }
,所以正切是周期为
π
{displaystyle pi }
的周期函数:对于任何角度
θ
{displaystyle theta }
和任何整数
k
{displaystyle k}
。余切函数也可以使用泰勒展开式定义cot的微分是负csc的平方另外所以可以用cot
θ
=
i
(
e
i
θ
+
e
−
i
θ
)
e
i
θ
−
e
−
i
θ
{displaystyle cot theta ={frac {{mathrm {i} }(e^{{mathrm {i} }theta }+e^{-{mathrm {i} }theta })}{e^{{mathrm {i} }theta }-e^{-{mathrm {i} }theta }}},}cot
2
θ
=
cot
2
θ
−
1
2
cot
θ
=
1
cot
θ
−
1
−
1
cot
θ
+
1
{displaystyle {begin{aligned}cot 2theta &={frac {cot ^{2}theta -1}{2cot theta }}\&={frac {1}{cot theta -1}}-{frac {1}{cot theta +1}}\end{aligned}}}余切定理是三角学中关于三角形内切圆半径的定理。假设
α
{displaystyle alpha }
,
β
{displaystyle beta }
, 与
γ
{displaystyle gamma }
是三角形的三个内角,
a
{displaystyle a}
,
b
{displaystyle b}
, 与
c
{displaystyle c}
是与之对应的三个对边,若那么余切定理告诉我们:还有总而言之:余切定理就是某个角一半的余切等于半周长减去这个角所对的边长再除以三角形的内切圆半径。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割 · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式
相关
- 气喘喘息 、哮喘(英语:asthma,又称气喘)是常见的气道慢性炎症疾病,主要特征是多变和复发的症状、可逆性气流阻塞,和支气管痉挛(英语:bronchospasm)。常见症状表现为喘息 、咳嗽、胸腔紧
- 海豹海豹科(学名:Phocidae)动物俗称海豹,是食肉目鳍足类的一科,常见的有斑海豹、港海豹、冠海豹等。海豹是成纺锤体型、四肢特化成鳍状的哺乳类动物,头圆颈短,没有外耳廓,因为它们的脸部
- 血红蛋白尿血红素尿症(Hemoglobinuria)是在尿液中发现血红蛋白(血红素)浓度过高的疾病。此疾病多半和溶血性贫血(英语:hemolytic anemia)有关,是原发性的血管内溶血,破坏红血球,因此血红素释放到
- 阿基斯二世阿基斯二世(古希腊语:Ἄγις B', 英语:Agis II),(?-前399年),前427年—前399年在位,斯巴达埃乌吕彭家族国王,阿基达姆斯二世之子及继承人。公元前426年与公元前425年的阿基达姆斯战
- 索尔·阿伦·克里普克索尔·阿伦·克里普克(英语:Saul Aaron Kripke,/ˈkrɪpki/,音“克里普基”,1940年11月13日-),美国逻辑学家和哲学家,模态逻辑语义学创始人之一,指称因果-历史论(英语:Causal-historical
- 四号德尔塔-4运载火箭是德尔塔系列运载火箭的一个型号,由波音综合国防系统集团(IDS)设计,由位在阿拉巴马州迪凯特的联合发射同盟(United Launch Alliance)所建造。在最后一次位于联合
- 勒克莱尔主战坦克勒克莱尔坦克(法语:Char Leclerc),又名雷克勒坦克,非官方代号AMX-56,是法国国有军火商GIAT(现奈克斯特公司(英语:Nexter Systems))所研制的主战坦克,它在1993年起取代1960年代服役的AMX-
- 曼尼普尔Dr. Najma Heptulla曼尼普尔邦(印地语:मणिपुर,孟加拉语:মণিপুর,IAST转写:Maṇipūr)是印度东北的一个邦。该邦成立于1972年,东以缅甸为界,西与阿萨姆邦相连,南以米佐拉
- 新西伯利亚新西伯利亚(俄语:Новосиби́рск,IPA:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code20
- 血管外膜血管的外膜(Tunica adventita/Tunica externa)是指包在血管最外的一层疏松结缔组织组成的膜,其主要功能是为血管壁的细胞提供养分(Loose Connective Tissue),另外,血管受损时,外膜中
