首页 >
余切
✍ dations ◷ 2025-07-11 16:00:21 #余切
余切(英语:Cotangent,一般记作
cot
{displaystyle cot }
,或者ctg)是三角函数的一种,是正切的余角函数。它的定义域是整个不等于
k
π
{displaystyle kpi }
的实数的集合,
k
{displaystyle k}
为整数,值域是整个实数集。它是周期函数,其最小正周期为
π
{displaystyle pi }
。余切函数是奇函数。余切函数在各个小区间上单独看为单调递减函数,和正切互为倒数,其函数图形和正切函数图形对称于
π
4
{displaystyle {frac {pi }{4}}}
;该函数不连续,有奇点
k
π
{displaystyle kpi }
,其中
k
{displaystyle k}
是一个整数。余切最早用符号tan.com表示,该符号同正切一样,最初由T.芬克使用。后来人们又逐渐将该符号简化为ctg,后来又改为cot,与现代符号完全相同。在直角三角形中,一个锐角的余切定义为它的邻边与对边的比值,也就是:可以发现其定义和正切函数互为倒数。设
α
{displaystyle alpha }
是平面直角坐标系xOy中的一个象限角,
P
(
x
,
y
)
{displaystyle Pleft({x,y}right)}
是角的终边上一点,
r
=
x
2
+
y
2
>
0
{displaystyle r={sqrt {x^{2}+y^{2}}}>0}
是P到原点O的距离,则α的正切定义为:图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角
θ
{displaystyle theta }
,并与单位圆相交,并令这个交点为y。另原点为O。做一直线,y点,垂直于
O
y
¯
{displaystyle {overline {Oy}}}
,并与单位圆相切,令直线与y轴的交点,则此点与y点之距离为余切比值。单位圆可以被认为是通过改变邻边和对边的长度,产生斜边等于 1 的无限数目个三角形的一种方式。对于大于
2
π
{displaystyle 2pi }
或小于
−
2
π
{displaystyle -2pi }
的角度,简单的继续绕单位圆旋转。在这种方式下,有些三角函数变成了周期为
2
π
{displaystyle 2pi }
的周期函数;但由于余切是切线,再绕单位圆旋转时,会出现周期是
π
{displaystyle pi }
,所以正切是周期为
π
{displaystyle pi }
的周期函数:对于任何角度
θ
{displaystyle theta }
和任何整数
k
{displaystyle k}
。余切函数也可以使用泰勒展开式定义cot的微分是负csc的平方另外所以可以用cot
θ
=
i
(
e
i
θ
+
e
−
i
θ
)
e
i
θ
−
e
−
i
θ
{displaystyle cot theta ={frac {{mathrm {i} }(e^{{mathrm {i} }theta }+e^{-{mathrm {i} }theta })}{e^{{mathrm {i} }theta }-e^{-{mathrm {i} }theta }}},}cot
2
θ
=
cot
2
θ
−
1
2
cot
θ
=
1
cot
θ
−
1
−
1
cot
θ
+
1
{displaystyle {begin{aligned}cot 2theta &={frac {cot ^{2}theta -1}{2cot theta }}\&={frac {1}{cot theta -1}}-{frac {1}{cot theta +1}}\end{aligned}}}余切定理是三角学中关于三角形内切圆半径的定理。假设
α
{displaystyle alpha }
,
β
{displaystyle beta }
, 与
γ
{displaystyle gamma }
是三角形的三个内角,
a
{displaystyle a}
,
b
{displaystyle b}
, 与
c
{displaystyle c}
是与之对应的三个对边,若那么余切定理告诉我们:还有总而言之:余切定理就是某个角一半的余切等于半周长减去这个角所对的边长再除以三角形的内切圆半径。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割 · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式
相关
- 哥本哈根哥本哈根(丹麦语:København, 发音 帮助·信息)是丹麦的首都、最大城市及最大港口。座落于丹麦西兰岛东部,与瑞典的马尔默隔松德海峡相望。厄勒海峡大桥在2000年完工后,哥本哈根
- 粉刺痤疮(英语:acne、拼音:cuó chuāng、注音:ㄘㄨㄛˊ ㄔㄨㄤ);也称为寻常性痤疮(拉丁语:acne vulgaris),在毛囊被死皮细胞和来自皮肤的油脂堵塞时出现。 它的特点是黑头或白头、疙瘩、
- 过渡体衬线体(Serif)是一种有衬线的字体,又称为有衬线体、衬线字、曲线描边字,俗称白体字;而与之相对的,没有衬线的字体则被称为无衬线体。衬线是字形笔画末端的装饰细节部分。一般认为
- 推论在数学上,推论(也称为系、系理)指能够“简单明了地”从前述命题推出的论断,推论往往在定理后出现。如果命题B能够被简单明了的从命题A推导出,则称B为A的推论。推论、定理、命题等
- 视光学眼科视光学(英文:Optometry),是光学和眼科的结合,运用光学仪器来检查眼睛的视觉功能,并采取相应的非手术或手术的手段来治疗病人的近视、远视、散光、老视和双眼视觉功能性异常等
- 乳酸发酵呼吸作用,又称为细胞呼吸(Cellular respiration),是生物体细胞把有机物氧化分解并转化能量的化学过程,也称为释放作用。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作
- 古虫动物门古虫动物亚门(学名:Vetulicolia),旧称古虫动物门,是一类已经完全灭绝的脊索动物,在分类学上可能属于后口动物的基部,包括十几个来自寒武纪的化石种。古虫动物亚门是由中国西北大学
- 爱丽舍条约爱丽舍条约(Élysée Treaty)又称作德法合作条约、法德友好条约,是于1963年1月22日由时任联邦德国总理康拉德·阿登纳和法国总统夏尔·戴高乐在巴黎爱丽舍宫签订的合作条约。签
- 磷酸双酯键磷酸二酯键(英语:phosphodiester bond)也称为“3′,5′-磷酸二酯键”或“磷酸双酯键”,是核酸分子中的磷酸基团的磷原子与另外两个五碳糖分子的碳原子之间形成的共价键。这种形
- MgIsub2/sub碘化镁是一种无机化合物,理论上化学式为MgI2。由于通常含有结晶水,它的化学组成可以表示为MgI2(H2O)x。这些盐是典型的离子化合物,易溶于水。碘化镁的商业用途较少,但它可用作有