首页 >
余切
✍ dations ◷ 2025-04-25 01:31:26 #余切
余切(英语:Cotangent,一般记作
cot
{displaystyle cot }
,或者ctg)是三角函数的一种,是正切的余角函数。它的定义域是整个不等于
k
π
{displaystyle kpi }
的实数的集合,
k
{displaystyle k}
为整数,值域是整个实数集。它是周期函数,其最小正周期为
π
{displaystyle pi }
。余切函数是奇函数。余切函数在各个小区间上单独看为单调递减函数,和正切互为倒数,其函数图形和正切函数图形对称于
π
4
{displaystyle {frac {pi }{4}}}
;该函数不连续,有奇点
k
π
{displaystyle kpi }
,其中
k
{displaystyle k}
是一个整数。余切最早用符号tan.com表示,该符号同正切一样,最初由T.芬克使用。后来人们又逐渐将该符号简化为ctg,后来又改为cot,与现代符号完全相同。在直角三角形中,一个锐角的余切定义为它的邻边与对边的比值,也就是:可以发现其定义和正切函数互为倒数。设
α
{displaystyle alpha }
是平面直角坐标系xOy中的一个象限角,
P
(
x
,
y
)
{displaystyle Pleft({x,y}right)}
是角的终边上一点,
r
=
x
2
+
y
2
>
0
{displaystyle r={sqrt {x^{2}+y^{2}}}>0}
是P到原点O的距离,则α的正切定义为:图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角
θ
{displaystyle theta }
,并与单位圆相交,并令这个交点为y。另原点为O。做一直线,y点,垂直于
O
y
¯
{displaystyle {overline {Oy}}}
,并与单位圆相切,令直线与y轴的交点,则此点与y点之距离为余切比值。单位圆可以被认为是通过改变邻边和对边的长度,产生斜边等于 1 的无限数目个三角形的一种方式。对于大于
2
π
{displaystyle 2pi }
或小于
−
2
π
{displaystyle -2pi }
的角度,简单的继续绕单位圆旋转。在这种方式下,有些三角函数变成了周期为
2
π
{displaystyle 2pi }
的周期函数;但由于余切是切线,再绕单位圆旋转时,会出现周期是
π
{displaystyle pi }
,所以正切是周期为
π
{displaystyle pi }
的周期函数:对于任何角度
θ
{displaystyle theta }
和任何整数
k
{displaystyle k}
。余切函数也可以使用泰勒展开式定义cot的微分是负csc的平方另外所以可以用cot
θ
=
i
(
e
i
θ
+
e
−
i
θ
)
e
i
θ
−
e
−
i
θ
{displaystyle cot theta ={frac {{mathrm {i} }(e^{{mathrm {i} }theta }+e^{-{mathrm {i} }theta })}{e^{{mathrm {i} }theta }-e^{-{mathrm {i} }theta }}},}cot
2
θ
=
cot
2
θ
−
1
2
cot
θ
=
1
cot
θ
−
1
−
1
cot
θ
+
1
{displaystyle {begin{aligned}cot 2theta &={frac {cot ^{2}theta -1}{2cot theta }}\&={frac {1}{cot theta -1}}-{frac {1}{cot theta +1}}\end{aligned}}}余切定理是三角学中关于三角形内切圆半径的定理。假设
α
{displaystyle alpha }
,
β
{displaystyle beta }
, 与
γ
{displaystyle gamma }
是三角形的三个内角,
a
{displaystyle a}
,
b
{displaystyle b}
, 与
c
{displaystyle c}
是与之对应的三个对边,若那么余切定理告诉我们:还有总而言之:余切定理就是某个角一半的余切等于半周长减去这个角所对的边长再除以三角形的内切圆半径。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割 · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式
相关
- 动物è§å†…文动物是多细èƒçœŸæ ¸ç”Ÿå‘½ä½“ä¸çš„一大类群,统称为动物界ã
- 血球凝集素血球凝集素(hemagglutinin)(C53H67N9O17) (TYR-PRO-TYR-ASP-VAL-PRO-ASP-TYR-ALA),是指可使红血球凝集的抗体或其他物质。在流感病毒、痳疹病毒(以及许多其他细菌和病毒)表面等均
- 肾肾(Kidney)是脊椎动物体内的一种器官,属于泌尿系统的一部分,负责过滤血液中的杂质、维持体液和电解质的平衡,最后产生尿液经由后续管道排出体外;同时也具备内分泌的功能以调节血压
- 柬埔寨法院特别法庭柬埔寨法院特别法庭(高棉语:អង្គជំនុំជម្រះវិសាមញ្ញក្នុងតុលាការកម្ពុជា,angk chomnoumchomreah visaeamonhnh knong tolakar kampo
- 中国科学院上海巴斯德研究所中国科学院上海巴斯德研究所(英语:Institut Pasteur of Shanghai, Chinese Academy of Sciences),成立于2005年,位于上海市徐汇区。是由中国科学院、上海市和法国巴斯德研究所共
- 菲利普·皮内尔菲利普·皮内尔(Philippe Pinel 法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000",
- 雅典娜系列运载火箭雅典娜系列运载火箭(Athena)是美国开发的一次性使用运载系统,1995年首次发射,2001年退役。
- 雅典市雅典 (英语:Athens),又译阿森斯,正式名称为雅典-克拉克县(Athens–Clarke County),为佐治亚州东北部的合并市县。成立于1806年,市名来自古希腊学术中心雅典。原为雅典-克拉克县县治,19
- 西兰花西兰花(学名:Brassica oleracea var. italica,英语:Broccoli),又称青花菜、绿花菜、绿花椰菜、百加利(一些海外的中国餐馆所用音译),是一种蔬菜。西兰花源于意大利,和花椰菜、结球甘蓝
- 红露酒红麹酒,是一种以红麹米和糯米为主要原料酿制成的粮食酒,为中国特产。红麹米虽然具备一定的糖化和发酵能力,却不足以单独产出高浓度的酒,因此自古以来,红麹酒需另加酒曲来拟补。把