余切

✍ dations ◷ 2025-02-23 13:47:16 #余切
余切(英语:Cotangent,一般记作 cot {displaystyle cot } ,或者ctg)是三角函数的一种,是正切的余角函数。它的定义域是整个不等于 k π {displaystyle kpi } 的实数的集合, k {displaystyle k} 为整数,值域是整个实数集。它是周期函数,其最小正周期为 π {displaystyle pi } 。余切函数是奇函数。余切函数在各个小区间上单独看为单调递减函数,和正切互为倒数,其函数图形和正切函数图形对称于 π 4 {displaystyle {frac {pi }{4}}} ;该函数不连续,有奇点 k π {displaystyle kpi } ,其中 k {displaystyle k} 是一个整数。余切最早用符号tan.com表示,该符号同正切一样,最初由T.芬克使用。后来人们又逐渐将该符号简化为ctg,后来又改为cot,与现代符号完全相同。在直角三角形中,一个锐角的余切定义为它的邻边与对边的比值,也就是:可以发现其定义和正切函数互为倒数。设 α {displaystyle alpha } 是平面直角坐标系xOy中的一个象限角, P ( x , y ) {displaystyle Pleft({x,y}right)} 是角的终边上一点, r = x 2 + y 2 > 0 {displaystyle r={sqrt {x^{2}+y^{2}}}>0} 是P到原点O的距离,则α的正切定义为:图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ {displaystyle theta } ,并与单位圆相交,并令这个交点为y。另原点为O。做一直线,y点,垂直于 O y ¯ {displaystyle {overline {Oy}}} ,并与单位圆相切,令直线与y轴的交点,则此点与y点之距离为余切比值。单位圆可以被认为是通过改变邻边和对边的长度,产生斜边等于 1 的无限数目个三角形的一种方式。对于大于 2 π {displaystyle 2pi } 或小于 − 2 π {displaystyle -2pi } 的角度,简单的继续绕单位圆旋转。在这种方式下,有些三角函数变成了周期为 2 π {displaystyle 2pi } 的周期函数;但由于余切是切线,再绕单位圆旋转时,会出现周期是 π {displaystyle pi } ,所以正切是周期为 π {displaystyle pi } 的周期函数:对于任何角度 θ {displaystyle theta } 和任何整数 k {displaystyle k} 。余切函数也可以使用泰勒展开式定义cot的微分是负csc的平方另外所以可以用cot ⁡ θ = i ( e i θ + e − i θ ) e i θ − e − i θ {displaystyle cot theta ={frac {{mathrm {i} }(e^{{mathrm {i} }theta }+e^{-{mathrm {i} }theta })}{e^{{mathrm {i} }theta }-e^{-{mathrm {i} }theta }}},}cot ⁡ 2 θ = cot 2 ⁡ θ − 1 2 cot ⁡ θ = 1 cot ⁡ θ − 1 − 1 cot ⁡ θ + 1 {displaystyle {begin{aligned}cot 2theta &={frac {cot ^{2}theta -1}{2cot theta }}\&={frac {1}{cot theta -1}}-{frac {1}{cot theta +1}}\end{aligned}}}余切定理是三角学中关于三角形内切圆半径的定理。假设 α {displaystyle alpha } , β {displaystyle beta } , 与 γ {displaystyle gamma } 是三角形的三个内角, a {displaystyle a} , b {displaystyle b} , 与 c {displaystyle c} 是与之对应的三个对边,若那么余切定理告诉我们:还有总而言之:余切定理就是某个角一半的余切等于半周长减去这个角所对的边长再除以三角形的内切圆半径。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • 恶心恶心(英文:Nausea又称kalang或pinky),又称反胃,在医学上是指胃部不适或感到想呕吐的症状。恶心本身不是疾病,而是多种情况下产生症状,其中许多与胃有关。头晕可能会导致恶心。
  • 唯物主义唯物论(英语:materialism),哲学理论,认为世界的基本成分为物质,所有的事物 (包含心灵及意识) 都是物质交互作用的结果。物质形式与过程是人类认识世界的主要途径,持着“只有事实上
  • 闪米特语族闪米特语族,译作閃語族、塞姆语族或閃米特語族 ,旧称叙利亚-阿拉伯语族,是亚非语系之下的语族之一,起源于中东地区,其下属语言约有3.3亿人作为母语,分布于西亚、北非和非洲之角,也
  • 数秘术数秘术,是指物象化成数字的占卜,如姓名学是用笔画数。早期数学家对数秘术研究有所参与,例如毕达哥拉斯认为数学可以解释世上一切事物。他认为一切真理可以用比率、平方及直角三
  • 非那西丁非那西丁(Phenacetin,或译非那西汀),化学式C10H13NO2,在室温是白色结晶固体,熔点约134℃,是一种在许多国家被禁售的药物。非那西丁在1887年发明, 主要作为止痛药使用。通常每日300至
  • 三硝基苯胺2,4,6-三硝基苯胺(2,4,6-Trinitroaniline, TNA),化学式C6H4N4O6,因其含有三个硝基,是一种爆炸性的强氧化剂。因纯度或溶液浓度的差异,呈黄色至红色。三硝基苯胺的应用包括迫击炮
  • 护卫舰护卫舰(英语:corvette)是吨位高于巡逻舰,小于巡防舰,搭载轻武装的舰艇,等级上是属沿岸海域(绿水海军)的中型舰艇,近代海军中多半是排水量1千至2千吨的水准,偶尔会有超过2500吨的特例。
  • 放射性衰变放射性或辐射性是指某元素的放射性同位素从不稳定的原子核自发地放出射线(如α射线、β射线、γ射线等)而衰变形成另一种同位素(衰变产物),这种现象称为放射性。衰变时放出的能量
  • 尼罗河尼罗河(英语:Nile,阿拉伯语:النيل‎,埃及语:Ḥ'pī / iteru,科普特语:ⲫⲓⲁⲣⲟ / phiaro)是一条流经非洲东部与北部的河流,与中非地区的刚果河以及西非地区的尼日尔河并列非洲
  • 动漫动漫是动画或漫画的合称与缩写,是在华人地区才有的称呼,另外西方国家将日本动画称Anime、漫画则称为Manga。而现今,动漫的发展已属于文化创意产业,同时是目前全世界热门且高人气