余切

✍ dations ◷ 2025-06-28 01:26:43 #余切
余切(英语:Cotangent,一般记作 cot {displaystyle cot } ,或者ctg)是三角函数的一种,是正切的余角函数。它的定义域是整个不等于 k π {displaystyle kpi } 的实数的集合, k {displaystyle k} 为整数,值域是整个实数集。它是周期函数,其最小正周期为 π {displaystyle pi } 。余切函数是奇函数。余切函数在各个小区间上单独看为单调递减函数,和正切互为倒数,其函数图形和正切函数图形对称于 π 4 {displaystyle {frac {pi }{4}}} ;该函数不连续,有奇点 k π {displaystyle kpi } ,其中 k {displaystyle k} 是一个整数。余切最早用符号tan.com表示,该符号同正切一样,最初由T.芬克使用。后来人们又逐渐将该符号简化为ctg,后来又改为cot,与现代符号完全相同。在直角三角形中,一个锐角的余切定义为它的邻边与对边的比值,也就是:可以发现其定义和正切函数互为倒数。设 α {displaystyle alpha } 是平面直角坐标系xOy中的一个象限角, P ( x , y ) {displaystyle Pleft({x,y}right)} 是角的终边上一点, r = x 2 + y 2 > 0 {displaystyle r={sqrt {x^{2}+y^{2}}}>0} 是P到原点O的距离,则α的正切定义为:图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ {displaystyle theta } ,并与单位圆相交,并令这个交点为y。另原点为O。做一直线,y点,垂直于 O y ¯ {displaystyle {overline {Oy}}} ,并与单位圆相切,令直线与y轴的交点,则此点与y点之距离为余切比值。单位圆可以被认为是通过改变邻边和对边的长度,产生斜边等于 1 的无限数目个三角形的一种方式。对于大于 2 π {displaystyle 2pi } 或小于 − 2 π {displaystyle -2pi } 的角度,简单的继续绕单位圆旋转。在这种方式下,有些三角函数变成了周期为 2 π {displaystyle 2pi } 的周期函数;但由于余切是切线,再绕单位圆旋转时,会出现周期是 π {displaystyle pi } ,所以正切是周期为 π {displaystyle pi } 的周期函数:对于任何角度 θ {displaystyle theta } 和任何整数 k {displaystyle k} 。余切函数也可以使用泰勒展开式定义cot的微分是负csc的平方另外所以可以用cot ⁡ θ = i ( e i θ + e − i θ ) e i θ − e − i θ {displaystyle cot theta ={frac {{mathrm {i} }(e^{{mathrm {i} }theta }+e^{-{mathrm {i} }theta })}{e^{{mathrm {i} }theta }-e^{-{mathrm {i} }theta }}},}cot ⁡ 2 θ = cot 2 ⁡ θ − 1 2 cot ⁡ θ = 1 cot ⁡ θ − 1 − 1 cot ⁡ θ + 1 {displaystyle {begin{aligned}cot 2theta &={frac {cot ^{2}theta -1}{2cot theta }}\&={frac {1}{cot theta -1}}-{frac {1}{cot theta +1}}\end{aligned}}}余切定理是三角学中关于三角形内切圆半径的定理。假设 α {displaystyle alpha } , β {displaystyle beta } , 与 γ {displaystyle gamma } 是三角形的三个内角, a {displaystyle a} , b {displaystyle b} , 与 c {displaystyle c} 是与之对应的三个对边,若那么余切定理告诉我们:还有总而言之:余切定理就是某个角一半的余切等于半周长减去这个角所对的边长再除以三角形的内切圆半径。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • 手术室手术室,又称开刀房,指医院中提供无菌环境以实施手术的场所手术室通常至少包含以下设施:
  • 北大西洋公约组织北大西洋公约组织(英语:North Atlantic Treaty Organization,缩写为NATO;法语:Organisation du Traité de l'Atlantique Nord,缩写为OTAN),简称北约组织或北约 或音译纳托,是欧洲及
  • 奥地利-巴伐利亚语奥地利-巴伐利亚语(巴伐利亚语:Boarisch .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","
  • 骷髅之舞《骷髅之舞》(法语:Danse Macabre),作品40,又名《死之舞》,是法国作曲家圣桑的管弦乐作品。此曲本源自1872年的一首艺术歌曲,1874年将原曲改成为管弦乐作品,并于1875年1月24日于巴黎
  • 上卢瓦尔省上卢瓦尔省(法文:Haute-Loire)是法国奥弗涅-隆-阿尔卑斯大区所辖的省份。该省编号为43。上卢瓦尔省是在1790年3月4号爆发的法国大革命中成立的最初的83个省份之一,包括旧省奥弗
  • 克莱芙王妃克莱芙王妃是法国作家拉法耶特夫人的一部小说,一开始由匿名发布。
  • 南宽扎省南宽扎省位于安哥拉中西,与本哥省、本吉拉省、比耶省、北广萨省、万博省、马兰哲省等省份相邻。
  • 苯甲酰基苯甲酰基(英语:benzoyl)在有机化学中常常被表示为“C6H5(C=O)−”官能团,缩写为“Bz”,请注意不要与“Bn”和“Bzl”弄混。苯甲酰基,苯甲酰(英语:Benzoylurea)常常在醇类,苯酚类,胺类与
  • AAA干电池(Dry cell)的定义是以糊状电解液来产生直流电的化学电池(湿电池则为使用液态电解液的化学电池),大致上分为一次电池及蓄电池两种,是日常生活之中为普遍使用,以及轻便的电池。
  • 抗剪强度剪切强度(Shear strength)是工程学名词,是一个描述物质对抗剪切力强度的专有名词,也就是物质在承受剪切力时会出现降伏或是结构失效(英语:structural failure)时的剪切力强度。剪切