余切

✍ dations ◷ 2024-12-22 22:52:54 #余切
余切(英语:Cotangent,一般记作 cot {displaystyle cot } ,或者ctg)是三角函数的一种,是正切的余角函数。它的定义域是整个不等于 k π {displaystyle kpi } 的实数的集合, k {displaystyle k} 为整数,值域是整个实数集。它是周期函数,其最小正周期为 π {displaystyle pi } 。余切函数是奇函数。余切函数在各个小区间上单独看为单调递减函数,和正切互为倒数,其函数图形和正切函数图形对称于 π 4 {displaystyle {frac {pi }{4}}} ;该函数不连续,有奇点 k π {displaystyle kpi } ,其中 k {displaystyle k} 是一个整数。余切最早用符号tan.com表示,该符号同正切一样,最初由T.芬克使用。后来人们又逐渐将该符号简化为ctg,后来又改为cot,与现代符号完全相同。在直角三角形中,一个锐角的余切定义为它的邻边与对边的比值,也就是:可以发现其定义和正切函数互为倒数。设 α {displaystyle alpha } 是平面直角坐标系xOy中的一个象限角, P ( x , y ) {displaystyle Pleft({x,y}right)} 是角的终边上一点, r = x 2 + y 2 > 0 {displaystyle r={sqrt {x^{2}+y^{2}}}>0} 是P到原点O的距离,则α的正切定义为:图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ {displaystyle theta } ,并与单位圆相交,并令这个交点为y。另原点为O。做一直线,y点,垂直于 O y ¯ {displaystyle {overline {Oy}}} ,并与单位圆相切,令直线与y轴的交点,则此点与y点之距离为余切比值。单位圆可以被认为是通过改变邻边和对边的长度,产生斜边等于 1 的无限数目个三角形的一种方式。对于大于 2 π {displaystyle 2pi } 或小于 − 2 π {displaystyle -2pi } 的角度,简单的继续绕单位圆旋转。在这种方式下,有些三角函数变成了周期为 2 π {displaystyle 2pi } 的周期函数;但由于余切是切线,再绕单位圆旋转时,会出现周期是 π {displaystyle pi } ,所以正切是周期为 π {displaystyle pi } 的周期函数:对于任何角度 θ {displaystyle theta } 和任何整数 k {displaystyle k} 。余切函数也可以使用泰勒展开式定义cot的微分是负csc的平方另外所以可以用cot ⁡ θ = i ( e i θ + e − i θ ) e i θ − e − i θ {displaystyle cot theta ={frac {{mathrm {i} }(e^{{mathrm {i} }theta }+e^{-{mathrm {i} }theta })}{e^{{mathrm {i} }theta }-e^{-{mathrm {i} }theta }}},}cot ⁡ 2 θ = cot 2 ⁡ θ − 1 2 cot ⁡ θ = 1 cot ⁡ θ − 1 − 1 cot ⁡ θ + 1 {displaystyle {begin{aligned}cot 2theta &={frac {cot ^{2}theta -1}{2cot theta }}\&={frac {1}{cot theta -1}}-{frac {1}{cot theta +1}}\end{aligned}}}余切定理是三角学中关于三角形内切圆半径的定理。假设 α {displaystyle alpha } , β {displaystyle beta } , 与 γ {displaystyle gamma } 是三角形的三个内角, a {displaystyle a} , b {displaystyle b} , 与 c {displaystyle c} 是与之对应的三个对边,若那么余切定理告诉我们:还有总而言之:余切定理就是某个角一半的余切等于半周长减去这个角所对的边长再除以三角形的内切圆半径。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • 齿颚矫正学齿颚矫正学(Orthodontics)是牙医学的一门专科,是研究牙齿咬合不正,又称错咬(Malocclusion)的治疗方法与学问。牙齿咬合不正其原因可能因为牙齿天生不规则生长或是后天错误咬合与上
  • H60-H95ICD-10 第八章:耳和乳突疾病,为世界卫生组织创建的ICD-10中涉及耳与乳突的疾病分类。外耳疾病(H60-H62)中耳和乳突疾病(H65-H75)内耳疾病(H80-H83)耳的其他疾患(H90-H95)
  • 情感情感可以指:
  • KiBKibibyte是一种资讯计量单位,代表1024字节,即210字节,一般简称为KiB。Kibibyte是来自英文 kilo binary byte 的缩写,意思为“千位二进制字节”。
  • 牻牛儿基牻牛儿基焦磷酸香叶基香叶基焦磷酸(Geranylgeranyl pyrophosphate,简称GGPP),又名牻牛儿基牻牛儿基焦磷酸,是生物体在透过HMG-CoA还原酶途径来生产萜烯类化合物(terpenes)和类萜化合物(terpenoids)
  • 鲍氏南方古猿鲍氏傍人(学名:Paranthropus boisei)为人科傍人属的一种,是早期的人族及最大的傍人。他生存于260-120万年前上新世至更新世的东非。他最初被命名鲍氏东非人,及后被更名为鲍氏南方
  • 彼得二世彼得二世·阿列克谢耶维奇(1715年10月23日-1730年1月30日,1727年—1730年在位),是俄罗斯帝国皇帝,彼得大帝的皇储阿列克谢和布伦斯威克·沃尔芬布特尔公国夏洛特郡主之子。叶卡捷
  • 篆刻篆刻二字,最初见于扬雄的法言:“童子雕虫篆刻是也。”篆刻有广义与狭义两种解释。狭义的篆刻专指后人所谓的治印之学;广义的篆刻则泛指一切雕琢技法。篆刻也是刻印印章的一种,但
  • 蠕动斯托克斯流(英语:Stokes flow),又称为蠕动流(creeping flow),在流体力学中指黏性力远大于惯性力的流动,其名称源于爱尔兰物理学家乔治·斯托克斯。斯托克斯流的雷诺数十分小(
  • 申长雨申长雨(1963年6月-),河南南阳人,中国塑料成型及模具技术专家。1980年9月参加工作,1986年12月加入中国共产党。1984年毕业于解放军铁道兵工程学院机械系,1987年、1990年先后获大连理