余切

✍ dations ◷ 2025-11-12 06:46:23 #余切
余切(英语:Cotangent,一般记作 cot {displaystyle cot } ,或者ctg)是三角函数的一种,是正切的余角函数。它的定义域是整个不等于 k π {displaystyle kpi } 的实数的集合, k {displaystyle k} 为整数,值域是整个实数集。它是周期函数,其最小正周期为 π {displaystyle pi } 。余切函数是奇函数。余切函数在各个小区间上单独看为单调递减函数,和正切互为倒数,其函数图形和正切函数图形对称于 π 4 {displaystyle {frac {pi }{4}}} ;该函数不连续,有奇点 k π {displaystyle kpi } ,其中 k {displaystyle k} 是一个整数。余切最早用符号tan.com表示,该符号同正切一样,最初由T.芬克使用。后来人们又逐渐将该符号简化为ctg,后来又改为cot,与现代符号完全相同。在直角三角形中,一个锐角的余切定义为它的邻边与对边的比值,也就是:可以发现其定义和正切函数互为倒数。设 α {displaystyle alpha } 是平面直角坐标系xOy中的一个象限角, P ( x , y ) {displaystyle Pleft({x,y}right)} 是角的终边上一点, r = x 2 + y 2 > 0 {displaystyle r={sqrt {x^{2}+y^{2}}}>0} 是P到原点O的距离,则α的正切定义为:图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ {displaystyle theta } ,并与单位圆相交,并令这个交点为y。另原点为O。做一直线,y点,垂直于 O y ¯ {displaystyle {overline {Oy}}} ,并与单位圆相切,令直线与y轴的交点,则此点与y点之距离为余切比值。单位圆可以被认为是通过改变邻边和对边的长度,产生斜边等于 1 的无限数目个三角形的一种方式。对于大于 2 π {displaystyle 2pi } 或小于 − 2 π {displaystyle -2pi } 的角度,简单的继续绕单位圆旋转。在这种方式下,有些三角函数变成了周期为 2 π {displaystyle 2pi } 的周期函数;但由于余切是切线,再绕单位圆旋转时,会出现周期是 π {displaystyle pi } ,所以正切是周期为 π {displaystyle pi } 的周期函数:对于任何角度 θ {displaystyle theta } 和任何整数 k {displaystyle k} 。余切函数也可以使用泰勒展开式定义cot的微分是负csc的平方另外所以可以用cot ⁡ θ = i ( e i θ + e − i θ ) e i θ − e − i θ {displaystyle cot theta ={frac {{mathrm {i} }(e^{{mathrm {i} }theta }+e^{-{mathrm {i} }theta })}{e^{{mathrm {i} }theta }-e^{-{mathrm {i} }theta }}},}cot ⁡ 2 θ = cot 2 ⁡ θ − 1 2 cot ⁡ θ = 1 cot ⁡ θ − 1 − 1 cot ⁡ θ + 1 {displaystyle {begin{aligned}cot 2theta &={frac {cot ^{2}theta -1}{2cot theta }}\&={frac {1}{cot theta -1}}-{frac {1}{cot theta +1}}\end{aligned}}}余切定理是三角学中关于三角形内切圆半径的定理。假设 α {displaystyle alpha } , β {displaystyle beta } , 与 γ {displaystyle gamma } 是三角形的三个内角, a {displaystyle a} , b {displaystyle b} , 与 c {displaystyle c} 是与之对应的三个对边,若那么余切定理告诉我们:还有总而言之:余切定理就是某个角一半的余切等于半周长减去这个角所对的边长再除以三角形的内切圆半径。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • 头部头在解剖学上是指动物的吻端部分,通常包括脑、眼、耳、鼻、口等器官(所有这些器官都支撑着各种感官功能,如视觉、听觉、嗅觉、味觉)。有些非常低等的动物可能没有头部,但多数两侧
  • 药物过量药物过量(英语:drug overdose或overdose,简称OD)是指因个人或经他人蓄意、无意或误认下,摄取或服用超过医师指示用药量、或超过建议用药量、或超过常规用药量,而产生中毒或导致死
  • 放射性污染放射性物体或放射源缺少防护措施,会导致放射性污染。核工业中会产生放射性废弃物、废水、废气等污染物。当核电站发生事故时,也会导致严重的环境污染,典型案例如切尔诺贝利事件
  • 吉尔伯特·赖尔吉尔伯特·赖尔(英语:Gilbert Ryle,1900年8月19日-1976年10月6日)是一名英国哲学家,是英国日常语言哲学中牛津学派的代表人物。他的著作《心的概念》被认为是日常语言学派的重要著
  • 词义对词义(word sense)最简单的解释就是词的含义或意义。它是人们对一个词所称呼的事物、现象、关系的概括认识。词义的语言功能,就是确定词和所称呼的事物之间的联系。词义还具有
  • 软颚化齿龈边音软颚化齿龈边音是辅音的一种。它与普通的齿龈边音一样,为浊辅音。X-SAMPA音标的符号为l。软颚化齿龈边音是齿龈边音在某些语言中的一个音位变体。因此,其国际音标符号也是由相
  • 葡萄糖胺氨基葡萄糖(C6H13NO5)又称葡萄糖胺、葡糖胺或氨基葡糖,是葡萄糖的一个羟基被氨基取代后的化合物。氨基葡萄糖是蛋白质或脂类糖基化反应中的重要前体。氨基葡萄糖衍生物N-乙酰氨
  • 尖吻鲭鲨尖吻鲭鲨(学名:Isurus oxyrinchus),又名灰鲭鲨、短鳍鲭鲨、马加鲨、烟仔沙,是软骨鱼纲鼠鲨目鼠鲨科中体型较大的鲨鱼。与它的近亲长鳍鲭鲨(I. paucus)同属鲭鲨属。尖吻鲭鲨分布在温
  • 华盛顿纪念碑华盛顿纪念碑(英语:Washington Monument),是美国首都华盛顿哥伦比亚特区的地标,为纪念美国总统乔治·华盛顿而建造,石碑建筑物的内部中空,是世界最高的石制建筑,原本米尔斯的最初设
  • 过度警觉过度警觉(英语:hypervigilance)是指经常表现为警惕地扫视周围环境以寻找危险迹象的过分警觉状态。常见于偏执型人格、创伤后应激障碍、被父母虐待或忽视的儿童,以及使用某些类型