余切

✍ dations ◷ 2025-01-23 02:23:18 #余切
余切(英语:Cotangent,一般记作 cot {displaystyle cot } ,或者ctg)是三角函数的一种,是正切的余角函数。它的定义域是整个不等于 k π {displaystyle kpi } 的实数的集合, k {displaystyle k} 为整数,值域是整个实数集。它是周期函数,其最小正周期为 π {displaystyle pi } 。余切函数是奇函数。余切函数在各个小区间上单独看为单调递减函数,和正切互为倒数,其函数图形和正切函数图形对称于 π 4 {displaystyle {frac {pi }{4}}} ;该函数不连续,有奇点 k π {displaystyle kpi } ,其中 k {displaystyle k} 是一个整数。余切最早用符号tan.com表示,该符号同正切一样,最初由T.芬克使用。后来人们又逐渐将该符号简化为ctg,后来又改为cot,与现代符号完全相同。在直角三角形中,一个锐角的余切定义为它的邻边与对边的比值,也就是:可以发现其定义和正切函数互为倒数。设 α {displaystyle alpha } 是平面直角坐标系xOy中的一个象限角, P ( x , y ) {displaystyle Pleft({x,y}right)} 是角的终边上一点, r = x 2 + y 2 > 0 {displaystyle r={sqrt {x^{2}+y^{2}}}>0} 是P到原点O的距离,则α的正切定义为:图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ {displaystyle theta } ,并与单位圆相交,并令这个交点为y。另原点为O。做一直线,y点,垂直于 O y ¯ {displaystyle {overline {Oy}}} ,并与单位圆相切,令直线与y轴的交点,则此点与y点之距离为余切比值。单位圆可以被认为是通过改变邻边和对边的长度,产生斜边等于 1 的无限数目个三角形的一种方式。对于大于 2 π {displaystyle 2pi } 或小于 − 2 π {displaystyle -2pi } 的角度,简单的继续绕单位圆旋转。在这种方式下,有些三角函数变成了周期为 2 π {displaystyle 2pi } 的周期函数;但由于余切是切线,再绕单位圆旋转时,会出现周期是 π {displaystyle pi } ,所以正切是周期为 π {displaystyle pi } 的周期函数:对于任何角度 θ {displaystyle theta } 和任何整数 k {displaystyle k} 。余切函数也可以使用泰勒展开式定义cot的微分是负csc的平方另外所以可以用cot ⁡ θ = i ( e i θ + e − i θ ) e i θ − e − i θ {displaystyle cot theta ={frac {{mathrm {i} }(e^{{mathrm {i} }theta }+e^{-{mathrm {i} }theta })}{e^{{mathrm {i} }theta }-e^{-{mathrm {i} }theta }}},}cot ⁡ 2 θ = cot 2 ⁡ θ − 1 2 cot ⁡ θ = 1 cot ⁡ θ − 1 − 1 cot ⁡ θ + 1 {displaystyle {begin{aligned}cot 2theta &={frac {cot ^{2}theta -1}{2cot theta }}\&={frac {1}{cot theta -1}}-{frac {1}{cot theta +1}}\end{aligned}}}余切定理是三角学中关于三角形内切圆半径的定理。假设 α {displaystyle alpha } , β {displaystyle beta } , 与 γ {displaystyle gamma } 是三角形的三个内角, a {displaystyle a} , b {displaystyle b} , 与 c {displaystyle c} 是与之对应的三个对边,若那么余切定理告诉我们:还有总而言之:余切定理就是某个角一半的余切等于半周长减去这个角所对的边长再除以三角形的内切圆半径。正弦 · 余弦 · 正切 · 余切 · 正割 · 余割反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • wikiWiki(i/ˈwɪkiː/)是在万维网上开放,且可供多人协同创作的超文本系统,由沃德·坎宁安于1995年首先开发。沃德·坎宁安将wiki定义为“一种允许一群用户用简单的描述来创建和连接
  • 粘菌素粘杆菌素(Colistin),又名克痢霉素、多粘菌素E,是一种多粘菌素类多肽抗生素,是两种环状多肽——粘杆菌素A和B的混合物。可由多粘芽肥杆菌变种粘菌素(Bacillus polymyxa var. colist
  • 突伦王朝突伦王朝(868年-905年),或译图伦王朝。是阿拔斯王朝时期在埃及、叙利亚的地方割据王朝。由突厥人艾哈迈德·伊本·突伦建立,王朝名称即来源于其名,亦译“伊本·突伦王朝”。之
  • 圣马丁修道院图尔的圣马丁(圣公会译圣马田,图尔主教)(拉丁文:Sanctus Martinus Turonensis,316年-397年11月11日),4世纪基督教著名圣人。关于他的一个传说是割袍赠予化身为乞丐的耶稣。马丁生于匈
  • 种系发生学现代生物分类群体从它们的 共同祖先遗传分化的图示。进化论介绍(英语:Introduction to evolution) 演化的证据 共同起源 共同起源的证据群体遗传学 · 遗传多样性 突变 · 自
  • 爱德华·诺顿·劳仑次爱德华·诺顿·罗伦兹(英语:Edward Norton Lorenz,1917年5月23日-2008年4月16日),美国数学与气象学家。洛伦茨1917年出生于美国康乃迪克州西哈特福特(英语:West Hartford),大学时期同
  • PmWikiPmWiki是一款用PHP编写的、无需数据库支持的Wiki。个人网站尤其适合。PmWiki支持简体中文,但需要做一些修改工作,以避免一些意想不到的错误。
  • 单磷酸脱氧鸟苷去氧鸟苷单磷酸(Deoxyguanosine monophosphate,dGMP)是一种结构与鸟苷单磷酸相似,但五碳糖的2号碳上少了一个-OH基的分子,并由单一的氢原子取而代之。
  • 语料库语料库一词在语言学上意指大量的文本,通常经过整理,具有既定格式与标记;事实上,语料库英文 "text corpus" 的涵意即为 "body of text"。
  • 40味觉感受器,类型2,成员40,TAS2R40是一个人类基因组中TAS2R40基因编码的蛋白质,是苦味味觉感受器的一员。TAS2R40引用了美国国家医学图书馆提供的资料,这些资料属于公共领域。