互能定理

✍ dations ◷ 2025-11-13 04:40:06 #电磁学,电动力学,物理定理

在电磁学中,互能定理是关于电磁场的能量传输的电磁场定理,用于解决发射天线到接收天线的能量传输问题,以及天线的方向图问题,波的展开问题。W. J. Welch 于1960年提出了时域互易定理(W. J. Welch)。V.H. Rumsey 简单的提到了对洛伦兹互易变换做共轭变换后可得到另一个公式,不过他没有做进一步深入的研究。(V.H. Rumsey)。赵双任在1987年初发表了互能定理(赵双任),Adrianus T. de Hoop 在1987年末发表了时域关联的的互易定理(Adrianus T. de Hoop)。可以证明时域关联的的互易定理与互能定理(赵双任)仅差一个傅里叶变换,因此可以看成是一个定理。时域互易定理(W. J. Welch)是时域关联的的互易定理(Adrianus T. de Hoop)的特例。因此可以把这三个定理可以统一为一个定理,考虑这个定理同洛伦兹互易定理有明显的区别。而且从这个定理的推导可以看出,它其实同坡印亭定理中的互能项紧密联系,因此把它们统称为互能定理是合理的。

这个定理后来又多次被重复发现,例如I. V. Petrusenko 的论文(I. V. Petrusenko)

互能定理的主要应用在于波的展开,球面波展开(赵双任),平面波展开(赵双任),场内积表达对电磁场复杂的计算公式的简化(赵双任),以及对发射天线,接收天线功率传输的计算。

惠勒和费曼在远距离作用(action-at-a-distance)(A.D. Fokker)(K. Schwarzschild)(H. Tetrode)的基础上提出了吸收体理论(J. A. Wheeler)(J. A. Wheeler)。John Cramer 在吸收体理论基础上提出了量子力学的交易诠释(John Cramer).。这些理论牵扯到超前波的概念。超前波是近代物理,量子力学,量子电动力学,量子场论中的非常重要概念。对超前波的存在与否的问题仍然是有争议的。因为这个概念牵扯到因果关系,波粒子二象性,波函数的塌缩,量子纠缠等等非常重要的物理概念。互能定理是上述吸收体理论,量子力学交易诠释在经典电磁场理论中的对应物,因此意义十分重要。

设有两个电流源, J 1 = J 1 ( t ) {\displaystyle \mathbf {J} _{1}=\mathbf {J} _{1}(t)} J 2 = J 2 ( t ) {\displaystyle \mathbf {J} _{2}=\mathbf {J} _{2}(t)} ,它们的电磁场为 E 1 = E 1 ( t ) {\displaystyle \mathbf {E} _{1}=\mathbf {E} _{1}(t)} H 1 = H 1 ( t ) {\displaystyle \mathbf {H} _{1}=\mathbf {H} _{1}(t)} E 2 = E 2 ( t ) {\displaystyle \mathbf {E} _{2}=\mathbf {E} _{2}(t)} H 2 = H 2 ( t ) {\displaystyle \mathbf {H} _{2}=\mathbf {H} _{2}(t)} 。时域电磁场互能定理可以表示为

t = {\displaystyle -\int _{t=-\infty }^{\infty }} {\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A d t {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}+\mathbf {E} _{2}\times \mathbf {H} _{1})\cdot d\mathbf {A} dt}

= t = V ( E 1 J 2 + E 2 J 1 ) d V d t {\displaystyle =\int _{t=-\infty }^{\infty }\int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}+\mathbf {E} _{2}\cdot \mathbf {J} _{1})dVdt}

如果两个电磁场 E 1 = E 1 ( t ) {\displaystyle \mathbf {E} _{1}=\mathbf {E} _{1}(t)} H 1 = H 1 ( t ) {\displaystyle \mathbf {H} _{1}=\mathbf {H} _{1}(t)} E 2 = E 2 ( t ) {\displaystyle \mathbf {E} _{2}=\mathbf {E} _{2}(t)} H 2 = H 2 ( t ) {\displaystyle \mathbf {H} _{2}=\mathbf {H} _{2}(t)} 中一个是超前波,一个是滞后波,超前波在过去某个时刻到达到球面,滞后波在将来某个时刻到达到球面,因此两个场不同时在大球面上不为零。因此有,

t = {\displaystyle \int _{t=\infty }^{\infty }} {\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A d t = 0 {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}+\mathbf {E} _{2}\times \mathbf {H} _{1})\cdot d\mathbf {A} dt=0}

因此有,

t = V ( E 1 J 2 + E 2 J 1 ) d V d t = 0 {\displaystyle \int _{t=-\infty }^{\infty }\int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}+\mathbf {E} _{2}\cdot \mathbf {J} _{1})dVdt=0}

假设 J 1 = J 1 ( t ) {\displaystyle \mathbf {J} _{1}=\mathbf {J} _{1}(t)} 在体积 V 1 {\displaystyle V1} 内。 J 2 = J 2 ( t ) {\displaystyle \mathbf {J} _{2}=\mathbf {J} _{2}(t)} 在体积 V 2 {\displaystyle V2} 内,且 V 1 {\displaystyle V1} V 2 {\displaystyle V2} V {\displaystyle V} 内。 因此有如下形式的电磁场互能定理,

t = V 2 E 2 J 1 d V d t = t = V 1 E 1 J 2 d V d t {\displaystyle -\int _{t=-\infty }^{\infty }\int _{V2}\mathbf {E} _{2}\cdot \mathbf {J} _{1}dVdt=\int _{t=-\infty }^{\infty }\int _{V1}\mathbf {E} _{1}\cdot \mathbf {J} _{2}dVdt}

该互能定理是由W. J. Welch 于1960年提出的时域互易定理(W. J. Welch)。

J. W. Welch 注意到该定理是适用于一个超前波同一个滞后波。因此该定理是关于超前波的电磁场定理。

赵双任在1987年初发表了互能定理(赵双任),紧接着又发表了互能定理更多的应用(赵双任)(赵双任),

{\displaystyle -} {\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}^{*}+\mathbf {E} _{2}^{*}\times \mathbf {H} _{1})\cdot d\mathbf {A} }

= V ( E 1 J 2 + E 2 J 1 ) d V {\displaystyle =\int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}^{*}+\mathbf {E} _{2}^{*}\cdot \mathbf {J} _{1})dV}

如果两个电磁场 E 1 = E 1 ( ω ) {\displaystyle \mathbf {E} _{1}=\mathbf {E} _{1}(\omega )} H 1 = H 1 ( ω ) {\displaystyle \mathbf {H} _{1}=\mathbf {H} _{1}(\omega )} E 2 = E 2 ( ω ) {\displaystyle \mathbf {E} _{2}=\mathbf {E} _{2}(\omega )} H 2 = H 2 ( ω ) {\displaystyle \mathbf {H} _{2}=\mathbf {H} _{2}(\omega )} 中一个是超前波,一个是滞后波,可以证明两个波在大球面的面积分为零。因此有,

{\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A = 0 {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}^{*}+\mathbf {E} _{2}^{*}\times \mathbf {H} _{1})\cdot d\mathbf {A} =0}

因此有,

V ( E 1 J 2 + E 2 J 1 ) d V = 0 {\displaystyle \int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}^{*}+\mathbf {E} _{2}^{*}\cdot \mathbf {J} _{1})dV=0}

假设 J 1 = J 1 ( ω ) {\displaystyle \mathbf {J} _{1}=\mathbf {J} _{1}(\omega )} 在体积 V 1 {\displaystyle V1} 内。 J 2 = J 2 ( ω ) {\displaystyle \mathbf {J} _{2}=\mathbf {J} _{2}(\omega )} 在体积 V 2 {\displaystyle V2} 内因此有如下形式的电磁场互能定理,

V 2 E 2 J 1 d V = V 1 E 1 J 2 d V {\displaystyle -\int _{V2}\mathbf {E} _{2}^{*}\cdot \mathbf {J} _{1}dV=\int _{V1}\mathbf {E} _{1}\cdot \mathbf {J} _{2}^{*}dV}

该定理表明,电流元 J 1 {\displaystyle \mathbf {J} _{1}} E 2 {\displaystyle \mathbf {E} _{2}} 输出的功率同电流元

相关

  • 体育与其它国家一样,体育在美国是民族文化一个重要的组成部分。美国体育与其它地区相比有很大的不同。首先美国人喜欢一些特别在美国流行的体育项目,例如与美式足球、棒球、篮球和
  • 屮部,为汉字索引里为部首之一,康熙字典214个部首中的第四十五个(三划的则为第十六个)。就繁体和简体中文中,屮部归于三划部首。屮部通常是从下方均可为部字,且无其他部首可用者将
  • 麦卡伦麦卡伦(英语:McAllen)是得克萨斯州伊达尔戈县的一座城市,位于得州南端里奥格兰德瓦利区域,距离作为美国与墨西哥的边界的格兰德河约5英里,2005年人口为126,411人,麦卡伦-爱丁堡-米
  • 第3舰队美国第三舰队(United States Third Fleet)是美国海军六大舰队之一。辖区范围在东部及北太平洋海域一带面积约五千万平方公里(包含白令海、阿拉斯加、阿留申群岛及部分北极),司令
  • 罗马王政时代罗马王政时代或罗马王国(拉丁语:REGNVM ROMANVM)是指前753年到前509年这一时期的古罗马,此时的罗马是一个君主制国家,尚未建立共和国。罗马王国时期,氏族部落组织尚完整存在,统治阶
  • 卡尔·罗夫卡尔·罗夫(英语:Karl Rove,1950年12月25日-)是美国共和党的一位政治顾问。他在乔治·W·布希担任总统期间曾担任高级顾问。2007年8月31日,他辞去了在白宫的所有职务。在此之后他
  • 薄幕层云薄幕层云(学名:Stratus nebulosus,缩写: ),是层云的一种,也是最常见的层云云种。薄幕层云没有明显的边界和外形,颜色常为灰色。接地的薄幕层云即为雾。
  • 天空实验室计划天空实验室(Skylab)是美国国家航空航天局于1973年至1979年进行的首次空间站计划。1973年到1974年间,曾有三批航天员到空间站内进行实验。天空实验室内部天空实验室外部主舱段S-
  • 强殖装甲 (美国电影)强殖装甲(英语:The Guyver),也叫变身斗士凯普,是1991年的美国电影。导演: Screaming Mad George、Steve Wang强殖装甲Template:Guyver
  • 巴勒斯坦国徽巴勒斯坦国国徽取材类似其自治政府;巴勒斯坦民族权力机构的徽章,又类似于周边阿拉伯国家的国徽图案。目前尚为非正式国徽。采用金黄色与黑色的萨拉丁之鹰。其中心为一白边盾牌