互能定理

✍ dations ◷ 2025-04-03 11:00:56 #电磁学,电动力学,物理定理

在电磁学中,互能定理是关于电磁场的能量传输的电磁场定理,用于解决发射天线到接收天线的能量传输问题,以及天线的方向图问题,波的展开问题。W. J. Welch 于1960年提出了时域互易定理(W. J. Welch)。V.H. Rumsey 简单的提到了对洛伦兹互易变换做共轭变换后可得到另一个公式,不过他没有做进一步深入的研究。(V.H. Rumsey)。赵双任在1987年初发表了互能定理(赵双任),Adrianus T. de Hoop 在1987年末发表了时域关联的的互易定理(Adrianus T. de Hoop)。可以证明时域关联的的互易定理与互能定理(赵双任)仅差一个傅里叶变换,因此可以看成是一个定理。时域互易定理(W. J. Welch)是时域关联的的互易定理(Adrianus T. de Hoop)的特例。因此可以把这三个定理可以统一为一个定理,考虑这个定理同洛伦兹互易定理有明显的区别。而且从这个定理的推导可以看出,它其实同坡印亭定理中的互能项紧密联系,因此把它们统称为互能定理是合理的。

这个定理后来又多次被重复发现,例如I. V. Petrusenko 的论文(I. V. Petrusenko)

互能定理的主要应用在于波的展开,球面波展开(赵双任),平面波展开(赵双任),场内积表达对电磁场复杂的计算公式的简化(赵双任),以及对发射天线,接收天线功率传输的计算。

惠勒和费曼在远距离作用(action-at-a-distance)(A.D. Fokker)(K. Schwarzschild)(H. Tetrode)的基础上提出了吸收体理论(J. A. Wheeler)(J. A. Wheeler)。John Cramer 在吸收体理论基础上提出了量子力学的交易诠释(John Cramer).。这些理论牵扯到超前波的概念。超前波是近代物理,量子力学,量子电动力学,量子场论中的非常重要概念。对超前波的存在与否的问题仍然是有争议的。因为这个概念牵扯到因果关系,波粒子二象性,波函数的塌缩,量子纠缠等等非常重要的物理概念。互能定理是上述吸收体理论,量子力学交易诠释在经典电磁场理论中的对应物,因此意义十分重要。

设有两个电流源, J 1 = J 1 ( t ) {\displaystyle \mathbf {J} _{1}=\mathbf {J} _{1}(t)} J 2 = J 2 ( t ) {\displaystyle \mathbf {J} _{2}=\mathbf {J} _{2}(t)} ,它们的电磁场为 E 1 = E 1 ( t ) {\displaystyle \mathbf {E} _{1}=\mathbf {E} _{1}(t)} H 1 = H 1 ( t ) {\displaystyle \mathbf {H} _{1}=\mathbf {H} _{1}(t)} E 2 = E 2 ( t ) {\displaystyle \mathbf {E} _{2}=\mathbf {E} _{2}(t)} H 2 = H 2 ( t ) {\displaystyle \mathbf {H} _{2}=\mathbf {H} _{2}(t)} 。时域电磁场互能定理可以表示为

t = {\displaystyle -\int _{t=-\infty }^{\infty }} {\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A d t {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}+\mathbf {E} _{2}\times \mathbf {H} _{1})\cdot d\mathbf {A} dt}

= t = V ( E 1 J 2 + E 2 J 1 ) d V d t {\displaystyle =\int _{t=-\infty }^{\infty }\int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}+\mathbf {E} _{2}\cdot \mathbf {J} _{1})dVdt}

如果两个电磁场 E 1 = E 1 ( t ) {\displaystyle \mathbf {E} _{1}=\mathbf {E} _{1}(t)} H 1 = H 1 ( t ) {\displaystyle \mathbf {H} _{1}=\mathbf {H} _{1}(t)} E 2 = E 2 ( t ) {\displaystyle \mathbf {E} _{2}=\mathbf {E} _{2}(t)} H 2 = H 2 ( t ) {\displaystyle \mathbf {H} _{2}=\mathbf {H} _{2}(t)} 中一个是超前波,一个是滞后波,超前波在过去某个时刻到达到球面,滞后波在将来某个时刻到达到球面,因此两个场不同时在大球面上不为零。因此有,

t = {\displaystyle \int _{t=\infty }^{\infty }} {\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A d t = 0 {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}+\mathbf {E} _{2}\times \mathbf {H} _{1})\cdot d\mathbf {A} dt=0}

因此有,

t = V ( E 1 J 2 + E 2 J 1 ) d V d t = 0 {\displaystyle \int _{t=-\infty }^{\infty }\int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}+\mathbf {E} _{2}\cdot \mathbf {J} _{1})dVdt=0}

假设 J 1 = J 1 ( t ) {\displaystyle \mathbf {J} _{1}=\mathbf {J} _{1}(t)} 在体积 V 1 {\displaystyle V1} 内。 J 2 = J 2 ( t ) {\displaystyle \mathbf {J} _{2}=\mathbf {J} _{2}(t)} 在体积 V 2 {\displaystyle V2} 内,且 V 1 {\displaystyle V1} V 2 {\displaystyle V2} V {\displaystyle V} 内。 因此有如下形式的电磁场互能定理,

t = V 2 E 2 J 1 d V d t = t = V 1 E 1 J 2 d V d t {\displaystyle -\int _{t=-\infty }^{\infty }\int _{V2}\mathbf {E} _{2}\cdot \mathbf {J} _{1}dVdt=\int _{t=-\infty }^{\infty }\int _{V1}\mathbf {E} _{1}\cdot \mathbf {J} _{2}dVdt}

该互能定理是由W. J. Welch 于1960年提出的时域互易定理(W. J. Welch)。

J. W. Welch 注意到该定理是适用于一个超前波同一个滞后波。因此该定理是关于超前波的电磁场定理。

赵双任在1987年初发表了互能定理(赵双任),紧接着又发表了互能定理更多的应用(赵双任)(赵双任),

{\displaystyle -} {\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}^{*}+\mathbf {E} _{2}^{*}\times \mathbf {H} _{1})\cdot d\mathbf {A} }

= V ( E 1 J 2 + E 2 J 1 ) d V {\displaystyle =\int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}^{*}+\mathbf {E} _{2}^{*}\cdot \mathbf {J} _{1})dV}

如果两个电磁场 E 1 = E 1 ( ω ) {\displaystyle \mathbf {E} _{1}=\mathbf {E} _{1}(\omega )} H 1 = H 1 ( ω ) {\displaystyle \mathbf {H} _{1}=\mathbf {H} _{1}(\omega )} E 2 = E 2 ( ω ) {\displaystyle \mathbf {E} _{2}=\mathbf {E} _{2}(\omega )} H 2 = H 2 ( ω ) {\displaystyle \mathbf {H} _{2}=\mathbf {H} _{2}(\omega )} 中一个是超前波,一个是滞后波,可以证明两个波在大球面的面积分为零。因此有,

{\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A = 0 {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}^{*}+\mathbf {E} _{2}^{*}\times \mathbf {H} _{1})\cdot d\mathbf {A} =0}

因此有,

V ( E 1 J 2 + E 2 J 1 ) d V = 0 {\displaystyle \int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}^{*}+\mathbf {E} _{2}^{*}\cdot \mathbf {J} _{1})dV=0}

假设 J 1 = J 1 ( ω ) {\displaystyle \mathbf {J} _{1}=\mathbf {J} _{1}(\omega )} 在体积 V 1 {\displaystyle V1} 内。 J 2 = J 2 ( ω ) {\displaystyle \mathbf {J} _{2}=\mathbf {J} _{2}(\omega )} 在体积 V 2 {\displaystyle V2} 内因此有如下形式的电磁场互能定理,

V 2 E 2 J 1 d V = V 1 E 1 J 2 d V {\displaystyle -\int _{V2}\mathbf {E} _{2}^{*}\cdot \mathbf {J} _{1}dV=\int _{V1}\mathbf {E} _{1}\cdot \mathbf {J} _{2}^{*}dV}

该定理表明,电流元 J 1 {\displaystyle \mathbf {J} _{1}} E 2 {\displaystyle \mathbf {E} _{2}} 输出的功率同电流元

相关

  • 麦哲伦号麦哲伦太空船,也称为金星雷达制图者,是美国国家航空航天局(NASA)于1989年5月4日发射,使用合成孔径雷达绘制金星表面地图和测量行星引力场的机器人太空探测器。麦哲伦探测器是第一
  • 约纳特阿达·约纳特(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Ta
  • 力量投射力量投射是一个用在政治学上的术语,指一个国家可以在远离本土的地方表现出武力和其他一些威胁。这种能力在国际关系是一个国家权力的重要组成成分。在军事上,与此类似的词是“
  • 类蜀黍属类蜀黍属(学名:Euchlaena)是禾本科下的一个属。该属共有2-3种,原产于墨西哥和中美。
  • 消费者 (生物)消费者(英语:Consumer)是指在食物链上,以其他生物(或其尸体)为食以获得能量的生物。消费者通常都是动物。素食动物通过吃生产者以维持生命(为直接以生产者为食物),然后再由肉食动物把
  • 犹太-美生阴谋论犹太-共济会阴谋论(英语:Judeo-Masonic conspiracy theory,又译为犹太-美生阴谋论)是一种声称犹太人和共济会之间秘密联盟的阴谋论。这些理论在右翼中,特别是在法国、西班牙、俄
  • 3年A班-从此刻起,大家都是我的人质-《3年A班-从此刻起,大家都是我的人质-》(日语:3年A組-今から皆さんは、人質です-)是校园和悬疑类型的冬季日剧,自2019年1月6日起于日本电视台的周日连续剧时段首播。另有特别篇《3年A
  • 澳能建设澳能建设控股有限公司,简称澳能建设控股和澳能建设(英语:MECOM Power and Construction Limited,港交所:1183),由主席郭林锡先生在2000年创办名为“鸿业工程”的基础上发展而成,主要
  • 布拉德·伯德布拉德·伯德(Phillip Bradley "Brad" Bird,1957年9月15日-) 是一名美国电影导演、配音员、动画师和编剧。他知名的作品有:科幻动画电影《铁巨人》(1999)、动画电影《超人总动员》(2
  • 奥列格·亚历山德罗维奇·洛西克奥列格·亚历山德罗维奇·洛西克(俄语:Олег Александрович Лосик,1915年12月4日-2012年8月20日),苏联军事领导人,苏联英雄(1944年)。装甲兵元帅(1975年)。1969年