互能定理

✍ dations ◷ 2025-07-04 08:33:50 #电磁学,电动力学,物理定理

在电磁学中,互能定理是关于电磁场的能量传输的电磁场定理,用于解决发射天线到接收天线的能量传输问题,以及天线的方向图问题,波的展开问题。W. J. Welch 于1960年提出了时域互易定理(W. J. Welch)。V.H. Rumsey 简单的提到了对洛伦兹互易变换做共轭变换后可得到另一个公式,不过他没有做进一步深入的研究。(V.H. Rumsey)。赵双任在1987年初发表了互能定理(赵双任),Adrianus T. de Hoop 在1987年末发表了时域关联的的互易定理(Adrianus T. de Hoop)。可以证明时域关联的的互易定理与互能定理(赵双任)仅差一个傅里叶变换,因此可以看成是一个定理。时域互易定理(W. J. Welch)是时域关联的的互易定理(Adrianus T. de Hoop)的特例。因此可以把这三个定理可以统一为一个定理,考虑这个定理同洛伦兹互易定理有明显的区别。而且从这个定理的推导可以看出,它其实同坡印亭定理中的互能项紧密联系,因此把它们统称为互能定理是合理的。

这个定理后来又多次被重复发现,例如I. V. Petrusenko 的论文(I. V. Petrusenko)

互能定理的主要应用在于波的展开,球面波展开(赵双任),平面波展开(赵双任),场内积表达对电磁场复杂的计算公式的简化(赵双任),以及对发射天线,接收天线功率传输的计算。

惠勒和费曼在远距离作用(action-at-a-distance)(A.D. Fokker)(K. Schwarzschild)(H. Tetrode)的基础上提出了吸收体理论(J. A. Wheeler)(J. A. Wheeler)。John Cramer 在吸收体理论基础上提出了量子力学的交易诠释(John Cramer).。这些理论牵扯到超前波的概念。超前波是近代物理,量子力学,量子电动力学,量子场论中的非常重要概念。对超前波的存在与否的问题仍然是有争议的。因为这个概念牵扯到因果关系,波粒子二象性,波函数的塌缩,量子纠缠等等非常重要的物理概念。互能定理是上述吸收体理论,量子力学交易诠释在经典电磁场理论中的对应物,因此意义十分重要。

设有两个电流源, J 1 = J 1 ( t ) {\displaystyle \mathbf {J} _{1}=\mathbf {J} _{1}(t)} J 2 = J 2 ( t ) {\displaystyle \mathbf {J} _{2}=\mathbf {J} _{2}(t)} ,它们的电磁场为 E 1 = E 1 ( t ) {\displaystyle \mathbf {E} _{1}=\mathbf {E} _{1}(t)} H 1 = H 1 ( t ) {\displaystyle \mathbf {H} _{1}=\mathbf {H} _{1}(t)} E 2 = E 2 ( t ) {\displaystyle \mathbf {E} _{2}=\mathbf {E} _{2}(t)} H 2 = H 2 ( t ) {\displaystyle \mathbf {H} _{2}=\mathbf {H} _{2}(t)} 。时域电磁场互能定理可以表示为

t = {\displaystyle -\int _{t=-\infty }^{\infty }} {\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A d t {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}+\mathbf {E} _{2}\times \mathbf {H} _{1})\cdot d\mathbf {A} dt}

= t = V ( E 1 J 2 + E 2 J 1 ) d V d t {\displaystyle =\int _{t=-\infty }^{\infty }\int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}+\mathbf {E} _{2}\cdot \mathbf {J} _{1})dVdt}

如果两个电磁场 E 1 = E 1 ( t ) {\displaystyle \mathbf {E} _{1}=\mathbf {E} _{1}(t)} H 1 = H 1 ( t ) {\displaystyle \mathbf {H} _{1}=\mathbf {H} _{1}(t)} E 2 = E 2 ( t ) {\displaystyle \mathbf {E} _{2}=\mathbf {E} _{2}(t)} H 2 = H 2 ( t ) {\displaystyle \mathbf {H} _{2}=\mathbf {H} _{2}(t)} 中一个是超前波,一个是滞后波,超前波在过去某个时刻到达到球面,滞后波在将来某个时刻到达到球面,因此两个场不同时在大球面上不为零。因此有,

t = {\displaystyle \int _{t=\infty }^{\infty }} {\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A d t = 0 {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}+\mathbf {E} _{2}\times \mathbf {H} _{1})\cdot d\mathbf {A} dt=0}

因此有,

t = V ( E 1 J 2 + E 2 J 1 ) d V d t = 0 {\displaystyle \int _{t=-\infty }^{\infty }\int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}+\mathbf {E} _{2}\cdot \mathbf {J} _{1})dVdt=0}

假设 J 1 = J 1 ( t ) {\displaystyle \mathbf {J} _{1}=\mathbf {J} _{1}(t)} 在体积 V 1 {\displaystyle V1} 内。 J 2 = J 2 ( t ) {\displaystyle \mathbf {J} _{2}=\mathbf {J} _{2}(t)} 在体积 V 2 {\displaystyle V2} 内,且 V 1 {\displaystyle V1} V 2 {\displaystyle V2} V {\displaystyle V} 内。 因此有如下形式的电磁场互能定理,

t = V 2 E 2 J 1 d V d t = t = V 1 E 1 J 2 d V d t {\displaystyle -\int _{t=-\infty }^{\infty }\int _{V2}\mathbf {E} _{2}\cdot \mathbf {J} _{1}dVdt=\int _{t=-\infty }^{\infty }\int _{V1}\mathbf {E} _{1}\cdot \mathbf {J} _{2}dVdt}

该互能定理是由W. J. Welch 于1960年提出的时域互易定理(W. J. Welch)。

J. W. Welch 注意到该定理是适用于一个超前波同一个滞后波。因此该定理是关于超前波的电磁场定理。

赵双任在1987年初发表了互能定理(赵双任),紧接着又发表了互能定理更多的应用(赵双任)(赵双任),

{\displaystyle -} {\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}^{*}+\mathbf {E} _{2}^{*}\times \mathbf {H} _{1})\cdot d\mathbf {A} }

= V ( E 1 J 2 + E 2 J 1 ) d V {\displaystyle =\int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}^{*}+\mathbf {E} _{2}^{*}\cdot \mathbf {J} _{1})dV}

如果两个电磁场 E 1 = E 1 ( ω ) {\displaystyle \mathbf {E} _{1}=\mathbf {E} _{1}(\omega )} H 1 = H 1 ( ω ) {\displaystyle \mathbf {H} _{1}=\mathbf {H} _{1}(\omega )} E 2 = E 2 ( ω ) {\displaystyle \mathbf {E} _{2}=\mathbf {E} _{2}(\omega )} H 2 = H 2 ( ω ) {\displaystyle \mathbf {H} _{2}=\mathbf {H} _{2}(\omega )} 中一个是超前波,一个是滞后波,可以证明两个波在大球面的面积分为零。因此有,

{\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 + E 2 × H 1 ) d A = 0 {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}^{*}+\mathbf {E} _{2}^{*}\times \mathbf {H} _{1})\cdot d\mathbf {A} =0}

因此有,

V ( E 1 J 2 + E 2 J 1 ) d V = 0 {\displaystyle \int _{V}(\mathbf {E} _{1}\cdot \mathbf {J} _{2}^{*}+\mathbf {E} _{2}^{*}\cdot \mathbf {J} _{1})dV=0}

假设 J 1 = J 1 ( ω ) {\displaystyle \mathbf {J} _{1}=\mathbf {J} _{1}(\omega )} 在体积 V 1 {\displaystyle V1} 内。 J 2 = J 2 ( ω ) {\displaystyle \mathbf {J} _{2}=\mathbf {J} _{2}(\omega )} 在体积 V 2 {\displaystyle V2} 内因此有如下形式的电磁场互能定理,

V 2 E 2 J 1 d V = V 1 E 1 J 2 d V {\displaystyle -\int _{V2}\mathbf {E} _{2}^{*}\cdot \mathbf {J} _{1}dV=\int _{V1}\mathbf {E} _{1}\cdot \mathbf {J} _{2}^{*}dV}

该定理表明,电流元 J 1 {\displaystyle \mathbf {J} _{1}} E 2 {\displaystyle \mathbf {E} _{2}} 输出的功率同电流元

相关

  • 专属单位有些单位,为了使用方便, 故把它定为使用环境上某些事物的比例,像这种单位, 是不宜把它定死为公制单位的固定倍数的. 因为它得随着环境的变动而变动.像海里就是,因为当初人家航
  • 哈巴罗夫斯克边疆区哈巴罗夫斯克边疆区(俄语:Хаба́ровский край,罗马化:Khabarovsky kray)是位于俄罗斯远东地区的一个边疆区,为俄罗斯第四大行政区。在2015年有人口1,338,305人,地广
  • 共同体共同体(英语:commonwealth),一个传统的英语名词,为一种政治共同体(community),为了促进共同的利益而成立。在传统上,它与共和主义(republicanism)同义,可被用来指单一的共和国,因此在这种
  • 新兴新兴可以指:
  • 盘菌见内文盘菌科(英文:Pezizaceae、cup fungi)是真菌下的一个科。2008年的资料统计,其下共有31属和230种。
  • 1952年被中华人民共和国处决的死刑犯列表1952年被中华人民共和国处决的死刑犯列表,旨在列出1952年被中华人民共和国处决的死刑犯。
  • GNU线性规划工具集GNU线性规划工具集(GNU Linear Programming Kit, GLPK)是用来求解大规模之线性规划(LP)、混合整数规划(MIP),跟其他相关问题的软件包。这是一套以 ANSI C 写的函式库。属于GNU计划
  • AKGAKG Acoustics 是哈曼国际工业旗下的部门,成立于1947年。第二次世界大战,奥地利百废待兴,许多制造行业已经毁于战火。鲁道夫·格瑞克博士(Dr. Rudolf Goerike)和恩斯特·普勒斯(Er
  • 斑竹园街道 (成都市)斑竹园镇,是中华人民共和国四川省成都市新都区下辖的一个乡镇级行政单位。2007年新都区增设斑竹园街道,街道办事处与斑竹园镇政府合署办公,实行“两块牌子、一套人员”。2019年
  • fork炸弹fork炸弹()在计算机领域中是一种利用系统调用fork(或其他等效的方式)进行的拒绝服务攻击。与病毒与蠕虫不同的是,fork炸弹没有传染性,而且fork炸弹会使有进程/程序限制的系统无法