任意子

✍ dations ◷ 2025-04-25 18:38:45 #任意子
任意子(英语:anyon)是数学和物理学中的一个概念。它描述一类只在二维系统中出现的粒子。它是对费米子和玻色子概念的广义化。在石墨烯、量子霍尔效应等二维物理系统中任意子这个数学概念变得越来越有用。 在三维以上的空间里,粒子根据其统计特性的不同只能是费米子或者是玻色子。费米子遵从费米-狄拉克统计,玻色子遵从玻色-爱因斯坦统计。在量子力学中这些统计是根据多粒子状态下粒子交换的反应来描写的。使用狄拉克符号在两粒子状态中为:其中 | … ⟩ {displaystyle left|dots rightrangle } 中的第一项是第一个粒子的状态,第二项是第二个粒子的状态。因此公式的左侧的意思是“粒子一在 ψ 1 {displaystyle psi _{1}} 状态和粒子二在 ψ 2 {displaystyle psi _{2}} 状态”。加号相应于两个粒子都是玻色子,减号相应于两个粒子都是费米子(玻色子和费米子混合的状态是不可能的)。1977年,奥斯陆大学的两名学者证明在二维系统中准粒子可以连续地遵循费米-狄拉克统计和玻色-爱因斯坦统计之间的任何统计。使用上面两粒子系统的例子其公式为:i {displaystyle i} 是复数计算中的虚数单位, θ {displaystyle theta } 是一个实数。 | e i θ | = 1 {displaystyle |e^{itheta }|=1} , e 2 i π = 1 {displaystyle e^{2ipi }=1} 和 e i π = − 1 {displaystyle e^{ipi }=-1} 。假如 θ = π {displaystyle theta =pi } 我们获得费米-狄拉克统计(负号),假如 θ = 2 π {displaystyle theta =2pi } 我们获得玻色-爱因斯坦统计(正号)。在其间我们获得其它统计。任意子这个名称是弗朗克·韦尔切克起的,因为这些粒子在进行粒子交换的情况下可以有任意相。我们也可以用 θ = 2 π s {displaystyle theta =2pi s} ,其中粒子的自旋量子数s对于玻色子而言是整数,对于费米子而言是半整数。因此:在边界上,分数量子霍尔效应任意子被限制在一维空间中移动。一维任意子的数学模型提供了上述交换关系的基础。任意子跟下面的概念相关:1982年,崔琦发现了分数量子霍尔效应,赢了物理学诺贝尔奖。他的作品说明了任意子可能有石墨烯和半导体的引用。在任何二维以上的空间里,自旋统计定理规定任何多粒子状态都必须要么遵循费米-狄拉克统计,要么遵循玻色-爱因斯坦统计。这与 n > 2 {displaystyle n>2} 的SO(n,1)基本群有关,其值为 Z 2 {displaystyle mathrm {Z} _{2}} (有两个元素的循环群)。因此这里只有两个可能性(这里的细节比上述的要复杂,但是最关键的原因是这个)。在二维空间里情况发生了变化,这里SO(2,1)的基本群是 Z {displaystyle Z} (无限循环)。这意味着Spin(2,1)不是通用覆盖:它们不是单连通。详细地说特殊正交群SO(2,1)的射影表示不仅仅有SO(2,1)或者其二重复盖群旋量群Spin(2,1)的线性表示。而这些额外的表示被称为任意子。这个概念对非相对论系统也有效。关键是空间旋量群是有无限基本群的SO(2)。这个事实也与纽结理论中著名的辫群有关。在二维中两个粒子的排列群不再是对称群 S 2 {displaystyle S_{2}} ,而是辫子群 B 2 {displaystyle B_{2}} 了。这样也可以来理解这个问题。有一种考虑解决量子计算机中的稳定性问题的方法是使用任意子制成的拓扑量子计算机(topological quantum computer)。这种计算机使用准粒子作为线程,使用辫理论来设计稳定的逻辑门。文小刚发现了分数量子霍尔效应自然地给非阿贝尔任意子。 阿列克谢·基塔耶夫表示了我们可以用非阿贝尔任意子来创造拓扑量子计算机。拓扑学和量子场论:超导现象:

相关

  • 扣带回扣带回是位于大脑内侧的一个解剖结构。扣带回将胼胝体不完全地包裹;在上方,扣带回为扣带沟所限。扣带回是脑的边缘系统的一部分。其功能牵涉情感、学习和记忆。扣带回的皮层称
  • 亚硝酸异戊酯亚硝酸异戊酯(化学式:C5H11ONO)是异戊醇生成的亚硝酸酯。无色至淡黄色、青黄色具有挥发性澄清液体。有水果香味。不溶于水,能溶于醇、醚。遇光和空气分解。由异戊醇和亚硝酸钠酯
  • eIF2eIF2(eukaryotic Initiation Factor 2,真核起始因子2)是一个重要的真核起始因子,它的作用是在真核翻译起始过程中介导起始tRNA(Met-tRNAi)与核糖体结合。它是一个异源三聚体,由α、
  • Mnemonic记忆术(英语:Mnemonic)又译助忆,是一种辅助记忆的方法,例如诗、韵文或是图像。人们在日常生活中经常使用缩写、口诀来记忆一些复杂的内容。例如,学生在学习眼球的解剖结构的时候会
  • 袁亚湘袁亚湘(1960年1月-),湖南人,中国数学家,中国科学院数学与系统科学研究院研究员、博士生导师。现任国际工业与应用数学联盟(International Council for Industrial and Applied Math
  • 美司钠美司钠(INN:Mesna,发音: /ˈmɛznə/),又名巯乙磺酸钠,是一种主要用于辅助环磷酰胺和异环磷酰胺化疗的有机硫化合物。它由百特国际以Uromitexan和Mesnex作为商品名销售。它的英文名
  • 联盟号宇宙飞船联盟号(俄语:Союз,IPA:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Genti
  • 经济部国际贸易局经济部国际贸易局(简称国贸局、贸易局),是中华民国经济部所属机关,是掌理中华民国国际贸易政策之研拟及进出口管理事项的主管机关。根据《经济及能源部贸易商务局组织法》草案拟
  • ɒ̈开央圆唇元音是一个用于一些口语的元音。由于国际音标中并没有特别用来标注与两个元音之间的符号,故在一般情况下仅使用⟨ɒ⟩来表示。若欲更清楚地描述这个元音,可以使用变音
  • 柯象柯象(?-1878年),台湾晚清人物,为清末的汉方医师、神职人员,为玄天上帝信徒,年约三十多岁即去世,殁后肉身不腐,被土库仔(今云林县大埤乡),乡民视为神灵。台湾日治时期,黄朝在“土库事件”中