任意子

✍ dations ◷ 2025-08-13 18:57:25 #任意子
任意子(英语:anyon)是数学和物理学中的一个概念。它描述一类只在二维系统中出现的粒子。它是对费米子和玻色子概念的广义化。在石墨烯、量子霍尔效应等二维物理系统中任意子这个数学概念变得越来越有用。 在三维以上的空间里,粒子根据其统计特性的不同只能是费米子或者是玻色子。费米子遵从费米-狄拉克统计,玻色子遵从玻色-爱因斯坦统计。在量子力学中这些统计是根据多粒子状态下粒子交换的反应来描写的。使用狄拉克符号在两粒子状态中为:其中 | … ⟩ {displaystyle left|dots rightrangle } 中的第一项是第一个粒子的状态,第二项是第二个粒子的状态。因此公式的左侧的意思是“粒子一在 ψ 1 {displaystyle psi _{1}} 状态和粒子二在 ψ 2 {displaystyle psi _{2}} 状态”。加号相应于两个粒子都是玻色子,减号相应于两个粒子都是费米子(玻色子和费米子混合的状态是不可能的)。1977年,奥斯陆大学的两名学者证明在二维系统中准粒子可以连续地遵循费米-狄拉克统计和玻色-爱因斯坦统计之间的任何统计。使用上面两粒子系统的例子其公式为:i {displaystyle i} 是复数计算中的虚数单位, θ {displaystyle theta } 是一个实数。 | e i θ | = 1 {displaystyle |e^{itheta }|=1} , e 2 i π = 1 {displaystyle e^{2ipi }=1} 和 e i π = − 1 {displaystyle e^{ipi }=-1} 。假如 θ = π {displaystyle theta =pi } 我们获得费米-狄拉克统计(负号),假如 θ = 2 π {displaystyle theta =2pi } 我们获得玻色-爱因斯坦统计(正号)。在其间我们获得其它统计。任意子这个名称是弗朗克·韦尔切克起的,因为这些粒子在进行粒子交换的情况下可以有任意相。我们也可以用 θ = 2 π s {displaystyle theta =2pi s} ,其中粒子的自旋量子数s对于玻色子而言是整数,对于费米子而言是半整数。因此:在边界上,分数量子霍尔效应任意子被限制在一维空间中移动。一维任意子的数学模型提供了上述交换关系的基础。任意子跟下面的概念相关:1982年,崔琦发现了分数量子霍尔效应,赢了物理学诺贝尔奖。他的作品说明了任意子可能有石墨烯和半导体的引用。在任何二维以上的空间里,自旋统计定理规定任何多粒子状态都必须要么遵循费米-狄拉克统计,要么遵循玻色-爱因斯坦统计。这与 n > 2 {displaystyle n>2} 的SO(n,1)基本群有关,其值为 Z 2 {displaystyle mathrm {Z} _{2}} (有两个元素的循环群)。因此这里只有两个可能性(这里的细节比上述的要复杂,但是最关键的原因是这个)。在二维空间里情况发生了变化,这里SO(2,1)的基本群是 Z {displaystyle Z} (无限循环)。这意味着Spin(2,1)不是通用覆盖:它们不是单连通。详细地说特殊正交群SO(2,1)的射影表示不仅仅有SO(2,1)或者其二重复盖群旋量群Spin(2,1)的线性表示。而这些额外的表示被称为任意子。这个概念对非相对论系统也有效。关键是空间旋量群是有无限基本群的SO(2)。这个事实也与纽结理论中著名的辫群有关。在二维中两个粒子的排列群不再是对称群 S 2 {displaystyle S_{2}} ,而是辫子群 B 2 {displaystyle B_{2}} 了。这样也可以来理解这个问题。有一种考虑解决量子计算机中的稳定性问题的方法是使用任意子制成的拓扑量子计算机(topological quantum computer)。这种计算机使用准粒子作为线程,使用辫理论来设计稳定的逻辑门。文小刚发现了分数量子霍尔效应自然地给非阿贝尔任意子。 阿列克谢·基塔耶夫表示了我们可以用非阿贝尔任意子来创造拓扑量子计算机。拓扑学和量子场论:超导现象:

相关

  • 生物浓缩性生物浓缩性,因自工业革命之后,人类大量合成各种化学物质应用在生活上,在经过使用之后,其中之化学毒性进入环境当中,在经过食物链生产者→初级消费者→次级消费者逐渐累积体内中的
  • 胃蛋白酶胃蛋白酶(英语:pepsin)是一种消化性蛋白酶,由胃部中的胃粘膜主细胞(gastric chief cell)所分泌,功能是将食物中的蛋白质分解为小的肽片段。胃蛋白酶的前体被称为胃蛋白酶原。1836年
  • 国家资本主义国家资本主义是一种典型由国家力量主导的资本主义制度,国有、国有控股、国营为主导的资本形式。《中国人民政治协商会议共同纲领》对“国家资本主义”的定义是:“国家资本与私
  • 芬森尼尔斯·吕贝里·芬森(丹麦语:Niels Ryberg Finsen,1860年12月15日-1904年9月24日)是一位来自法罗群岛的医师与科学家。他曾在1903年获得诺贝尔生理学或医学奖,是丹麦的第一座诺贝
  • 二级相变二级相变(Second order phase transition)为化学势的二阶偏微分发生突变的一类相变。相变时没有热效应和熵变,但热膨胀系数,压缩系数,比热容这三个化学势的二阶偏微分量发生突变
  • 张存浩张存浩(1928年2月23日-),籍贯山东无棣,生于天津,中国物理化学家。中国高能化学激光奠基人、分子反应动力学奠基人之一,长期从事催化、火箭推进剂、化学激光、分子反应动力学等领域
  • 邹志刚邹志刚(1955年3月-),生于天津,籍贯山东黄县,中国材料学专家,从事能源与环境材料方面的研究。1982年毕业于天津大学,1986年取得该校硕士学位,1996年取得东京大学博士学位。担任南京大
  • 巴拉迪穆罕默德·巴拉迪(阿拉伯语:محمد البرادعي‎,1942年6月17日-),埃及人,曾为国际原子能机构总干事,于2005年获诺贝尔和平奖。他通晓阿拉伯语、英语和法语,育有一子一女。穆
  • HD 85512 bHD 85512 b是一颗太阳系外行星,是绕行位于船帆座的K型主序星HD 85512(又称为格利泽 370)轨道上的行星,距离地球约36光年,又称为格利泽 370b(Gliese 370 b)。因为HD 85512 b的质量至
  • 2010年卡梅尔山区森林大火2010年卡梅尔山区森林大火是2010年12月初发生在以色列北部卡梅尔山区的森林大火,造成44人丧生,是以色列立国62年来最严重的森林火灾。大火于当地时间12月2日上午约11点半从山