任意子

✍ dations ◷ 2025-04-04 20:25:38 #任意子
任意子(英语:anyon)是数学和物理学中的一个概念。它描述一类只在二维系统中出现的粒子。它是对费米子和玻色子概念的广义化。在石墨烯、量子霍尔效应等二维物理系统中任意子这个数学概念变得越来越有用。 在三维以上的空间里,粒子根据其统计特性的不同只能是费米子或者是玻色子。费米子遵从费米-狄拉克统计,玻色子遵从玻色-爱因斯坦统计。在量子力学中这些统计是根据多粒子状态下粒子交换的反应来描写的。使用狄拉克符号在两粒子状态中为:其中 | … ⟩ {displaystyle left|dots rightrangle } 中的第一项是第一个粒子的状态,第二项是第二个粒子的状态。因此公式的左侧的意思是“粒子一在 ψ 1 {displaystyle psi _{1}} 状态和粒子二在 ψ 2 {displaystyle psi _{2}} 状态”。加号相应于两个粒子都是玻色子,减号相应于两个粒子都是费米子(玻色子和费米子混合的状态是不可能的)。1977年,奥斯陆大学的两名学者证明在二维系统中准粒子可以连续地遵循费米-狄拉克统计和玻色-爱因斯坦统计之间的任何统计。使用上面两粒子系统的例子其公式为:i {displaystyle i} 是复数计算中的虚数单位, θ {displaystyle theta } 是一个实数。 | e i θ | = 1 {displaystyle |e^{itheta }|=1} , e 2 i π = 1 {displaystyle e^{2ipi }=1} 和 e i π = − 1 {displaystyle e^{ipi }=-1} 。假如 θ = π {displaystyle theta =pi } 我们获得费米-狄拉克统计(负号),假如 θ = 2 π {displaystyle theta =2pi } 我们获得玻色-爱因斯坦统计(正号)。在其间我们获得其它统计。任意子这个名称是弗朗克·韦尔切克起的,因为这些粒子在进行粒子交换的情况下可以有任意相。我们也可以用 θ = 2 π s {displaystyle theta =2pi s} ,其中粒子的自旋量子数s对于玻色子而言是整数,对于费米子而言是半整数。因此:在边界上,分数量子霍尔效应任意子被限制在一维空间中移动。一维任意子的数学模型提供了上述交换关系的基础。任意子跟下面的概念相关:1982年,崔琦发现了分数量子霍尔效应,赢了物理学诺贝尔奖。他的作品说明了任意子可能有石墨烯和半导体的引用。在任何二维以上的空间里,自旋统计定理规定任何多粒子状态都必须要么遵循费米-狄拉克统计,要么遵循玻色-爱因斯坦统计。这与 n > 2 {displaystyle n>2} 的SO(n,1)基本群有关,其值为 Z 2 {displaystyle mathrm {Z} _{2}} (有两个元素的循环群)。因此这里只有两个可能性(这里的细节比上述的要复杂,但是最关键的原因是这个)。在二维空间里情况发生了变化,这里SO(2,1)的基本群是 Z {displaystyle Z} (无限循环)。这意味着Spin(2,1)不是通用覆盖:它们不是单连通。详细地说特殊正交群SO(2,1)的射影表示不仅仅有SO(2,1)或者其二重复盖群旋量群Spin(2,1)的线性表示。而这些额外的表示被称为任意子。这个概念对非相对论系统也有效。关键是空间旋量群是有无限基本群的SO(2)。这个事实也与纽结理论中著名的辫群有关。在二维中两个粒子的排列群不再是对称群 S 2 {displaystyle S_{2}} ,而是辫子群 B 2 {displaystyle B_{2}} 了。这样也可以来理解这个问题。有一种考虑解决量子计算机中的稳定性问题的方法是使用任意子制成的拓扑量子计算机(topological quantum computer)。这种计算机使用准粒子作为线程,使用辫理论来设计稳定的逻辑门。文小刚发现了分数量子霍尔效应自然地给非阿贝尔任意子。 阿列克谢·基塔耶夫表示了我们可以用非阿贝尔任意子来创造拓扑量子计算机。拓扑学和量子场论:超导现象:

相关

  • 子囊孢子子囊孢子(英语:ascospore)是一种真菌的孢子,为子囊菌门真菌的有性孢子,在子囊中产生。典型的一个子囊中有八个子囊孢子,此八个孢子是在胞质融合与核聚变(英语:Karyogamy)发生后,经由一
  • 国家医疗保障局社会保障基金:全国社会保障基金理事会国家医疗保障局,简称医保局,是中华人民共和国国务院主管医疗保障基金与医疗服务招标采购的副部级直属机构。国家医疗保障局主要负责拟订医
  • 漳浦县漳浦县(闽南语:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} Chiu
  • 威尼斯威尼斯(威尼斯语:Venezsia;意大利语:Venezia;弗留利语:Vignesie;拉丁语:Venetia;英文:Venice)是意大利东北部著名的旅游与工业城市,也是威尼托地区的首府。威尼斯城由被运河分隔并由桥梁
  • M蛋白M蛋白(英语:M protein)可能指:
  • 动眼神经副核动眼神经副核(accessory oculomotor nucleus)又称艾伟二氏核(Edinger–Westphal nucleus),属于副交感神经节前神经元,支配虹膜括约肌和睫状肌(英语:ciliary muscle)的运动。有时候,艾
  • 最大后验概率估计在贝叶斯统计学中,“最大后验概率估计”是后验概率分布的众数。利用最大后验概率估计可以获得对实验数据中无法直接观察到的量的点估计。它与最大似然估计中的经典方法有密切
  • 高雄县高雄县,为中华民国已经废止的一个行政区,位于台湾西南部,与台南县、台南市、高雄市、屏东县、台东县、花莲县、南投县、嘉义县相邻,包围着高雄市。北缘嘉南平原,西滨台湾海峡,东南
  • 百万美元宝贝《百万宝贝》(英语:Million Dollar Baby)是克林特·伊斯特伍德在2004年制作的电影,由克林特·伊斯特伍德、希拉里·斯旺克与摩根·弗里曼等人主演。得到第77届奥斯卡金像奖最佳
  • 丘英二丘英二(1915年-2014年9月),台湾诗人。原名张良典。 台南县人。台北医专毕业,行医为业。早在台南二中读高中时就开始以诗歌为主的文学创作,常向《台南新报》等报刊投寄诗稿。 1935