布洛赫波

✍ dations ◷ 2025-04-03 13:20:41 #布洛赫波
在固体物理学中,布洛赫波(Bloch wave)是周期性势场(如晶体)中粒子(一般为电子)的波函数,又名布洛赫态(Bloch state)。布洛赫波因其提出者美籍瑞士裔物理学家菲利克斯·布洛赫而得名。布洛赫波由一个平面波和一个周期函数 u ( r ) {displaystyle u({boldsymbol {r}})} (布洛赫波包)相乘得到。其中 u ( r ) {displaystyle u({boldsymbol {r}})} 与势场具有相同周期性。布洛赫波的具体形式为:式中k 为波向量。上式表达的波函数称为布洛赫函数。当势场具有晶格周期性时,其中的粒子所满足的波动方程的解ψ存在性质:这一结论称为布洛赫定理(Bloch's theorem),其中 R n {displaystyle {boldsymbol {R_{n}}}} 为晶格周期向量。可以看出,具有上式性质的波函数可以写成布洛赫函数的形式。平面波波向量 k {displaystyle {boldsymbol {k}}} (又称“布洛赫波向量”,它与约化普朗克常数的乘积即为粒子的晶体动量)表征不同原胞间电子波函数的位相变化,其大小只在一个倒易点阵向量之内才与波函数满足一一对应关系,所以通常只考虑第一布里渊区内的波向量,即所谓“简约波向量”。对一个给定的波矢和势场分布,电子运动的薛定谔方程具有一系列解,称为电子的能带,常用波函数的下标n 以区别。这些能带的能量在 k {displaystyle {boldsymbol {k}}} 的各个单值区分界处存在有限大小的空隙,称为能隙。在第一布里渊区中所有能量本征态的集合构成了电子的能带结构。在单电子近似的框架内,周期性势场中电子运动的宏观性质都可以根据能带结构及相应的波函数计算出。上述结果的一个推论为:在确定的完整晶体结构中,布洛赫波向量 k {displaystyle {boldsymbol {k}}} 是一个守恒量(以倒易点阵向量为模),即电子波的群速度为守恒量。换言之,在完整晶体中,电子运动可以不被格点散射地传播(所以该模型又称为近自由电子近似),晶态导体的电阻仅仅来自那些破坏了势场周期性的晶体缺陷以及电子与声子的相互作用。从薛定谔方程出发可以证明,哈密顿算符与平移算符的作用次序满足交换律,所以周期势场中粒子的本征波函数总是可以写成布洛赫函数的形式。更广义地说,本征函数满足的算符作用对称关系是群论中表示理论的一个特例。布洛赫波的概念由菲利克斯·布洛赫在1928年研究晶态固体的导电性时首次提出的,但其数学基础在历史上却曾由乔治·威廉·希尔(1877年),加斯东·弗洛凯(英语:Gaston Floquet)(1883年)和亚历山大·李雅普诺夫(1892年)等独立地提出。因此,类似性质的概念在各个领域有着不同的名称:常微分方程理论中称为弗洛凯理论(也有人称“李雅普诺夫-弗洛凯定理”);一维周期性波动方程则有时被称为希尔方程。

相关

  • 家庭结构传统的美国家庭结构被认为是一个两位成婚人士为自己的后代提供关怀和稳定的家庭支持系统。但是,这种双亲核心家庭已经变得不那么普遍,其它的家庭形式开始变得越来越常见。后代
  • 失聪听觉障碍(英语:Hearing loss)又称听力缺损,指听觉部分或完全丧失,而耳聋人士则是指完全没有或几乎没有听力者。听力缺损可能发生在单耳或双耳,有可能是暂时或永久性质。孩童的听力
  • 着重强调焦点(缩写为:foc)是一种语法的类别,用于确定句子的哪一部分能够提供新的、不可推导的或对比的信息。焦点与信息结构(英语:Information structure)有关。对比焦点尤其是指与对话者 (
  • 复生复活是指生命在死亡后再复生的意思,也称作死而复生。复活是很多宗教的中心思想,但其阐释却不一定与不死灵魂的宗教信念相关。复活的思想,存在于古今的宗教中。古代埃及人相信,人
  • 电子作战电子作战(以下简称电战)泛指利用各种装备与手段来控制与使用电磁波段(包含无线电、可见光、红外线与紫外线波段)而进行的军事行动,这些行动包含维持我方使用与控制的能力,与抵挡敌
  • 演化伦理学现代生物分类群体从它们的 共同祖先遗传分化的图示。进化论介绍(英语:Introduction to evolution) 演化的证据 共同起源 共同起源的证据群体遗传学 · 遗传多样性 突变 · 自
  • 叶足动物门叶足动物(学名:Lobopodia)是一类可以追溯至寒武纪时代的并系群,对于当中绝大部分至今仍然所知不多。此类下的动物具体节,有足,同时却很难被分类到节肢动物的范畴。基本上这类动物
  • 库尔特·哥德尔库尔特·弗雷德里希·哥德尔(德语:Kurt Friedrich Gödel,1906年4月28日-1978年1月14日),出生于奥匈帝国的数学家、逻辑学家和哲学家,维也纳学派(维也纳小组)的成员。哥德尔是二十世
  • 法国铁路法国铁路运输的铁路交通运输几乎全部由法国国家铁路运行(SNCF、Société Nationale des Chemins de fer français),铁路设施(德语:Bahnanlage)由法国铁路线路事业公社(RFF、Rése
  • 低地苏格兰语苏格兰语(Scots,在古诗中又称Lallans,意为低地),日耳曼语族中的语言变体之一,通行于苏格兰低地以及阿尔斯特省的部分地区(在阿尔斯特省中,又称为阿尔斯特苏格兰语)。为了与苏格兰盖尔