正电子

✍ dations ◷ 2025-10-29 12:02:07 #正电子
6969910938291000000♠9.10938291(40)×10−31 kg 6996548579909460000♠5.4857990946(22)×10−4 u −1 u正电子(又称阳电子、反电子、正子)是电子的反粒子,即电子的对应反物质。它带有+1单位电荷,+1.6×10-19C,自旋为1/2,质量与电子相同,皆为9.10×10-31kg。正电子与电子碰撞时会产生湮灭现象,这一过程遵守电荷守恒、能量守恒、动量守恒和角动量守恒。在高能情况下,湮灭会生成其他基本粒子。在低能情况下,正负电子湮灭主要生成两个或三个光子(有时也会生成更多光子)。另外,电子和正电子在湮灭之前有时会形成亚稳定的束缚态,即电子偶素。根据电子和正电子的不同自旋状态,电子偶素分为单态(1S0,总自旋为0)和三重态(3S1,总自旋为1)。在真空中,单态电子偶素的半衰期为125ps。三重态电子偶素的半衰期为142ns。当能量超过1.02兆电子伏特的光子经过原子核附近时(成对产生),或者在放射性元素的正β衰变中(通过弱相互作用),都有可能产生正电子。1930年英国物理学家保罗·狄拉克从理论上预言了正电子的存在,1932年美国物理学家卡尔·戴维·安德森在宇宙射线中发现了正电子。保罗·狄拉克于1928年发表了一份论文,当中提出电子能够拥有正电荷及负电荷。在这份论文中,狄拉克首次引进了狄拉克方程,这条方程统一了量子力学、狭义相对论及电子自旋,而自旋当时还是一个很新的概念,用于解释塞曼效应。论文中狄拉克并没有明确地预测新粒子的存在,但他允许电子可以用正能量或负能量作解。正能量解成功解释了实验结果,但负能量解却令狄拉克相当困惑,因为在他的数学模型中负能量解跟正能量解一样有效。在量子力学中是不能够无视负能量解的,这点就跟经典力学很不一样;双重解意味着电子有可能会在正负能量态间自发跳跃。然而,实验并没有观测到这样的跃迁。狄拉克把这个理论与观测间的冲突称为“未解决的难题”。狄拉克于1929年十二月撰写了一份后续论文,尝试解释相对论性电子那无可避免的负能量解。他的论点是“……具有负能量的电子在外加(电磁)场中移动就像它携带了正电荷”。他继续论述说所有空间都可被视为充满负能量态的“海”,因此这样就阻止了电子在正能量态(负电荷)与负能量态(正电荷)间的跃迁。论文同时探讨了质子是这种海中的岛的可能性,及这种岛其实是负电荷电子的可能性。狄拉克承认,质子与电子的巨大质量差是一个难题,但同时表示将来的理论“有希望”解决这个问题。对于狄拉克使用质子作为电子的负能量解,罗伯特·奥本海默表示强烈反对。他断言如果这是真的,那么氢原子就会瞬间自爆。狄拉克被奥本海默的论点说服,于是在1931年发表的一篇论文中预测存在一种未被发现的粒子“反电子”,其质量与电子一样,并且与电子接触时会互相湮灭。理查德·费曼及在他之前的厄恩斯特·斯蒂克尔堡,提出了一种对狄拉克方程负能量解的诠释,就是正电子是逆时间而行的电子。逆时间而行的电子,其电荷为正电荷。约翰·惠勒援引这个概念,来解释所有电子都共有的性质,同时指出在有自相互作用的复世界线上,“它们都是一样的电子”。后来,南部阳一郎将这样的一套理论,应用于所有物质-反物质对的创生与湮灭,还说明了“平常所见成对的最终创生与湮灭,并不是创生与湮灭,而是移动中的粒子改变方向而已,从过去到将来,又或是从将来到过去”。现时物理学家已经接受了逆时间观点,与其他绘景等价,但这个诠释却没有宏观的“因果”,因为微观物理描述并没有因果。德米特里·斯科别利岑(Dmitri Skobeltsyn)最早于1929年观测到正电子。在尝试用威尔逊云室来侦测宇宙射线中伽马辐射的时候,斯科别利岑探测到一种行动像电子的粒子,但它在磁场中的弯曲方向与电子相反。同样地,加州理工学院的一名研究生赵忠尧在1929年也注意到类似的实验结果,显示有一种性质像电子的粒子,但其电荷为正,不过由于实验结果并非决定性,所以赵忠尧并没有继续追查这个现象。卡尔·安德森于1932年8月2日发现正电子,亦因此于1936年获颁诺贝尔物理学奖。“正电子”(positron)一词是由安德森所创的。正电子是第一种被发现的反物质,因此当时成了反物质存在的证据。在发现时,安德森让宇宙射线通过云室及铅片。仪器被磁铁包围,而这些磁铁使不同电荷的粒子向不同的方向弯曲。每一粒通过照相底片的正电子,都会有一条离子轨迹,其曲率对应电子的质荷比,但轨迹方向与电子相反,意味着它的电荷也与电子相反。后来安德森在忆述往事时写道,假若之前赵忠尧的研究有后续的话,那么正电子在那个时候就会被发现了。在安德森公布发现正电子的时候,巴黎的弗雷德里克·约里奥-居里与伊雷娜·约里奥-居里夫妇已经持有有正电子轨迹的老照片,不过他们当时认为那轨是属于质子的,因此不予理会。新的研究大大地增加了正电子的生产量。劳伦斯利福摩尔国家实验室的物理学家团队,用特高亮度的短距离激光轰击一片1毫米厚的金箔,成功生产出1000亿个正电子。某些粒子加速器实验需要使正电子与电子在相对论性速度下对撞。高撞击能量与这些物质─反物质湮灭,能生成一整束各种各样的亚原子粒子。物理学家就是通过研究这些碰撞,来测试理论预测及寻找新的粒子。放射性核素(示踪物)所发射的正电子与生物体内电子湮灭所产生的伽马射线,可用正电子发射计算机断层扫描(PET)来探测。PET扫描器能做出详细的三维图像,显示人体的新陈代谢。材料研究中通常采用正电子湮没谱学(Positron Annihilation Spectroscopy, PAS)技术,用于探测固体材料中的空位、位错等微观缺陷。

相关

  • 母乳喂养母乳哺育(Breastfeeding),亦称哺乳、授乳或母乳喂养,指的是女性以乳房喂食婴儿母乳的行为。婴儿有吮吸反射,因此可以吮吸乳房并吞咽母乳,专家建议在出生后一小时即可哺喂母乳,之后
  • D06BB(Antifungals for dermatological use)(Emollients and protectives)(Preparations for treatment of wounds and ulcers)(Antipruritics, including antihistamines, anesthetics,
  • 世界知识产权组织世界知识产权组织(英语:World Intellectual Property Organization,简称WIPO)是联合国的15个专门机构之一,致力于促进使用和保护人类智能作品的国际组织。总部设在瑞士日内瓦,负责
  • 全钒氧化还原液流电池全钒氧化还原液流电池,或钒液流电池(Vanadium Redox Battery,缩写:VRB),是一种可充电的液流电池,它采用不同氧化态的钒离子来储存化学势能。 钒氧化还原电池利用钒以四种不同氧化态
  • 粥状动脉硬化动脉粥样硬化(英语:Atherosclerosis)是一种是粥样斑块(英语:Atheroma)沉积在血管壁并造成动脉狭窄的疾病。动脉粥样硬化的早期通常没有症状,严重时视其影响的动脉所在,可能造成冠状
  • 伍兹霍尔海洋研究所伍兹霍尔海洋研究所(英文:Woods Hole Oceanographic Institution)是专注于海洋科学与海洋工程的非盈利私人研究和教学机构,成立于1930年,是美国最大的独立海洋学研究所,拥有教职员
  • 右肺动脉肺动脉肺部的动脉,是人体内循环系统中肺循环的重要组成部分。与其他动脉不同,肺动脉中运输的是去氧血而非带氧血液。肺动脉携带去氧血由右心室打出,在肺部交换气体后,打入左心房
  • 走部,为汉字索引中的部首之一,康熙字典214个部首中的第一百五十六个(七划的则为第十个)。就繁体和简体中文中,走部归于七划部首。走部只以左方为部字,将字底下括起来。且无其他部
  • 麻部,为汉字索引中的部首之一,康熙字典214个部首中的第二百个(十一划的则为第六个)。就繁体和简体中文中,麻部归于十一划部首。麻部只以上方为部字。且无其他部首可用者将部首归
  • 礁溪温泉坐标:24°49′47″N 121°46′24″E / 24.829666°N 121.773201°E / 24.829666; 121.773201礁溪温泉位于台湾兰阳平原上的宜兰县礁溪乡德阳村,主要分布温泉沟溪谷中。分类上