球形

✍ dations ◷ 2025-07-18 07:57:13 #球形
在数学里,球是指球面内部的空间。球可以是封闭的(包含球面的边界点,称为闭球),也可以是开放的(不包含边界点,称为开球)。球的概念不只存在于三维欧氏空间里,亦存在于较低或较高维度,以及一般度量空间里。 n {displaystyle n,!} 维空间里的球称为 n {displaystyle n,!} 维球,且包含于 n − 1 {displaystyle n-1,!} 维球面内。因此,在欧氏平面里,球为一圆盘,包含在圆内。在三维空间里,球则是指在二维球面边界内的空间。在 n {displaystyle n,!} 维欧氏空间里,一个中心为 x {displaystyle x,!} ,半径为 r {displaystyle r,!} 的 n {displaystyle n,!} 维(开)球是个由所有距 x {displaystyle x,!} 的距离小于 r {displaystyle r,!} 的点所组成之集合。一个中心为 x {displaystyle x,!} ,半径为 r {displaystyle r,!} 的 n {displaystyle n,!} 维闭球是个由所有距 x {displaystyle x,!} 的距离小于等于 r {displaystyle r,!} 的点所组成之集合。在 n {displaystyle n,!} 维欧氏空间里,每个球都是某个超球面内部的空间。在一维时,球是个有界的区间;在二维时,是某个圆的内部(圆盘);而在三维时,则是某个球面的内部。在 n {displaystyle n,!} 维欧氏空间里,半径 R {displaystyle R,!} 的球之 n {displaystyle n,!} 维体积为:其中,Γ是李昂哈德·欧拉的Γ函数(可被视为阶乘在实数的延伸)。使用Γ函数在整数与半整数时的公式,可不需要估算Γ函数即可计算出球的体积:在奇数维度时的体积公式里,对每个奇数 2 k + 1 {displaystyle 2k+1,!} ,双阶乘 (2k + 1)!! 定义为 (2k + 1)!! = 1 · 3 · 5 ··· (2k − 1) · (2k + 1)。令 (M,d) 为一度量空间,即具有度量(距离函数)d 的集合 M。中心为 M 内的点 p,半径为 r > 0 的开球,通常标计为 Br(p) 或 B(p; r),定义为其闭球,可标计为 Bt 或 B,则定义为请特别注意,一个球(无论开放或封闭)总会包含点 p,因为依定义, r > 0。开球的闭包通常标记为 B r ( p ) ¯ {displaystyle {overline {B_{r}(p)}}} 。虽然 B r ( p ) ⊆ B r ( p ) ¯ {displaystyle B_{r}(p)subseteq {overline {B_{r}(p)}}} 与 B r ( p ) ¯ ⊆ B r [ p ] {displaystyle {overline {B_{r}(p)}}subseteq B_{r}} 总是成立的,但 B r ( p ) ¯ = B r [ p ] {displaystyle {overline {B_{r}(p)}}=B_{r}} 则不一定总是为真。举例来说,在一个具离散度量的度量空间 X 里,对每个 X 内的 p 而言, B 1 ( p ) ¯ = { p } {displaystyle {overline {B_{1}(p)}}={p}} ,但 B 1 [ p ] = X {displaystyle B_{1}=X} 。一个(开或闭)单位球为一半径为 1 的球。度量空间的子集是有界的,若该子集包含于某个球内。一个集合是全有界的,若给定一正值半径,该集合可被有限多个具该半径的球所覆盖。度量空间里的开球为拓扑空间里的基,其中所有的开集合均为某些(有限或无限个)开球的联集。该拓扑空间被称为由度量 d 导出之拓扑。每个具范数 |·| 的赋范向量空间亦为一度量空间,其中度量 d(x, y) = |x − y|。在此类空间里,每个球 Br(p) 均可视为是单位球 B1(0) 平移 p,再缩放 r 后所得之集合。前面讨论的欧氏空间里的球亦为赋范向量空间里球的一例。在具 p-范数 Lp 的笛卡尔空间 R n {displaystyle mathbb {R} ^{n}} 里,开球是指集合在二维(n=2)时,L1(通常称为曼哈顿度量)的球是对角线平行于坐标轴的正方形;而 L∞(切比雪夫度量)的球则是个边平行于坐标轴的正方形。对于 p 的其他值,该球则会是超椭圆的内部。在三维(n=3)时,L1 的球是个对角线平行为坐标轴的八面体,而 L∞ 的球则是个边平行为坐标轴的正立方体。对于 p 的其他值,该球则会是超椭球的内部。更一般性地,给定任一 Rn 内中心对称、有界、开放且凸的集合 X,均可定义一个在 Rn 的范数,该球均为 X 平移再一致缩放后所得之集合。须注意,若将此定理内的“开”子集以“闭”子集替代,则定理不能成立,因为原点也符合定理内所定之集合,但无法定义 Rn 内的范数。在拓扑学的文献里,“球”可能有两种含义,由上下文决定。“(开)球”一词有时被非正式地用于指代任何开集:可以用“p 点周围的一个球”代表包含p 的一个开集。该集合同胚于什么依赖于背景拓扑空间以及所选取的开集。同样,“闭球”有时用于表示这样一个开集的闭包。(这可能产生误导,例如超度量空间中一个闭球不是同样半径的开球的闭包,它们都是既开且闭的。)有时,邻域用于指代这个意义上的球,但是邻域其实有更一般的意义:p 的一个邻域是任何包含一个p 的开集的集合,因此通常不是开集。X 内的 n 维(开或闭)拓扑球是指 X 内同胚于 n 维(开或闭)欧几里得球的任一子集,该子集不一定需要由某个度量导出。n 维拓扑球在组合拓扑学里很重要,为建构胞腔复形的基础。任一 n 维开拓扑球均同胚于笛卡尔空间 Rn 及 n 维开单位超方形 ( 0 , 1 ) n ⊆ R n {displaystyle (0,1)^{n}subseteq mathbb {R} ^{n}} 。任一 n 维闭拓扑球均同胚于 n 维闭超方形 n。n 维球同胚于 m 维球,当且仅当 n = m。n 维开球 B 与 Rn 间的同胚可分成两种类型,以 B 的两种可能之拓扑定向来区分。一个 n 维拓扑球不一定是光滑的;若该球是光滑的,亦不一定需微分同胚于一 n 维欧几里得球。

相关

  • ICD-9编码列表 (760–779)医学导航: 产科生理/发育/薄膜(英语:Template:Extraembryonic and fetal membranes)病理/条件源/母体传递(英语:Template:Diseases of maternal transmission), 齐名(英语:Template:
  • 邮政美国邮票是指在美国发行的邮票。美国邮票可以分为普通邮票、纪念邮票、航空邮票三种类型。美国的第一套普通邮票发行于1847年,当时面值为5美分和10美分。未使用的1847年普通
  • 腰臀比腰臀比例(Waist–hip ratio WHR)是指腰围和臀围的比例,数值等于腰围除以臀围。严格来说,根据世界卫生组织的数据收集协议,腰围是在末根肋骨与上肠骨中间的水平量度。臀围则是在双
  • 相片相片,亦称照片,是从摄影得出来的影像,始源于1826年。 通常由感光纸张收集光子而产生出来,相片成相的原理是透过光的化学作用在感光的底片、纸张、玻璃或金属等辐射敏感材料上产
  • 二羟丙酮二羟基丙酮,丙糖的一种,为白色潮解结晶粉末,有凉的甜味和特征性气味。是最简单的酮糖。无手性中心,故无光学活性。通常以二聚体存在,二聚体可缓慢溶于1份水与15份乙醇的混合液中
  • 结膜结膜(conjunctiva)为眼部的一部分,位于眼睑内,并被覆于巩膜(眼白)表层。结膜在组织学上属于复层柱状上皮,并含有杯状细胞。结膜可分泌黏液和泪液来润滑眼球,然而其分泌的泪液量比泪
  • 米西尔逊-斯塔尔实验梅瑟生-史达实验(Meselson-Stahl experiment)是马修·梅瑟生(Matthew Meselson)与富兰克林·史达(Franklin Stahl)在1958年所作的实验,证明了DNA复制的半保留性质。氮是DNA的重要组
  • 合理观测标志命名和代码观测指标标识符逻辑命名与编码系统(Logical Observation Identifiers Names and Codes,LOINC) 是一部数据库和通用标准,用于标识检验医学及临床观测指标。LOINC数据库旨在促进临
  • GSH谷胱甘肽(英语:Glutathione),又称麸氨基硫,英文简写:GSH,属于三肽,由谷氨酸、半胱氨酸及甘氨酸所构成,其中第一个肽键与普通的肽键不同,是由谷氨酸的γ-羧基与半胱氨酸的氨基组成的,在
  • 反应激活能活化能(Activation energy)是一个化学名词,又被称为阈能。这一名词是由阿瑞尼士在1889年引入,用来定义一个化学反应的发生所需要克服的能量障碍。活化能可以用于表示一个化学反