听觉皮层

✍ dations ◷ 2025-08-22 07:46:01 #听觉皮层
初级听觉皮层是颞叶的一部分,在人类和其它脊椎动物中发挥处理听觉信息的功能。作为听觉系统的一部分,初级听觉皮层在听觉通路中执行基本的和更为高级的功能。它位于颞叶的两侧,大致在颞叶的上侧,位于颞叶上方的人类内部,位于侧裂内,包括Heschl回和部分颞回,包括平面和平面的平面(大致为Brodmann区域41 , 42,部分22)。单方面破坏导致轻微的听力损失,而双边破坏导致皮层耳聋。听觉皮质先前被分为初级(A1)和次要(A2)投影区域和进一步的关联区域。听觉皮层的现代分裂是核心(包括A1),皮带和参数。皮带是紧靠着芯的区域; 旁瓣与皮带的侧面相邻。除了通过听觉系统的较低部分从耳朵接收输入外,它还将信号发送回这些区域并与大脑皮质的其他部分相互连接。通过对啮齿动物,猫,猕猴和其他动物的研究获得关于听觉皮质的数据。在人类中,已经使用功能磁共振成像(fMRI),脑电图(EEG)和电皮质技术研究了听觉皮质的结构和功能。通过对啮齿动物,猫,猕猴和其他动物的研究获得关于听觉皮质的数据。在人类中,已经使用功能磁共振成像(fMRI),脑电图(EEG)和电皮质技术研究了听觉皮质的结构和功能。与新皮层中的许多区域一样,成年初级听觉皮质(A1)的功能特性高度依赖于生命早期发现的声音。这是使用动物模型,特别是猫和老鼠最好的研究。在大鼠中,在出生日(P)11至13期间暴露于单次频率可能导致A1中该频率表示的2倍扩大。重要的是,变化是持续的,因为它持续整个动物的生命,具体而言,在该时期之外的同样的暴露不会导致A1的tonotopy持续变化。与其他主要感觉皮层区域一样,只有在皮质区域接收和处理时,听觉才能达到感知。确凿证据的情况来自于病变的研究中谁已通过持续的伤害皮质区的人类患者的肿瘤或中风,或其中皮质区域是由手术损伤或其他方法无效动物实验。对人类的主要听觉皮层的损害导致了声音的丧失,但反射反射声音的能力仍然存在,因为在听觉脑干和中脑中存在大量的皮质下处理。听觉皮质中的神经元根据他们最佳反应的声音频率进行组织。听觉皮层一端的神经元对低频响应最好; 另一方面神经元对高频响应最佳。有多个听觉区域(非常像视觉皮层中的多个区域),可以在解剖学上进行区分,并且基于它们包含完整的“频率图”。该频率图(称为tonotopic图)的目的是未知的,并且可能反映了根据声音频率布置耳蜗的事实。听觉皮层涉及到识别和分离听觉“对象”等任务,并确定空间声音的位置。人脑扫描表明,当尝试识别音乐时,这个脑区域的外围位置是活跃的。单个细胞始终得到激发的声音在特定频率,或倍数是的频率。 听觉皮层在听觉中起着重要但不明确的作用。当听觉信息进入皮层时,究竟发生的具体情况还不清楚。听觉皮层的个体差异很大,正如生物学家詹姆斯·贝罗(James Beament)所指出的那样,他写道:“皮层太复杂了,我们可能希望的最大的原理就是理解它,因为我们已经有了证据表明没有两个皮质以完全相同的方式工作。“在听觉过程中,多个声音同时传导。听觉系统的作用是决定哪些组件形成声音链接。许多人猜测,这种联系是基于声音的位置。然而,反射出不同的媒体,这使得这个思维不太可能当有声音的众多扭曲。听觉皮层基于基础形成分组; 例如,在音乐中,这将包括和声,时间和音调。主要听觉皮层位于颞叶的上颞回,并延伸到外侧沟和横向时间回旋(也称为Heschl's gyri)。然后由人类大脑皮质的顶叶和额叶进行最终声音处理。动物研究表明,大脑皮层的听觉区域从听觉丘脑中获得上升的输入,并且它们在相同的脑半球上相互连接。听觉皮层由结构和功能彼此不同的领域组成。不同种类的田间数量有所不同,从啮齿动物中只有2 只,在恒河猴中多达15 只。目前,人类听觉皮层中的数字,位置和组织尚不清楚。关于人类听觉皮层的知识来自于从哺乳动物研究中获得的知识基础,包括灵长类动物,用于解释人类的电生理检测和功能成像研究。当交响乐团或爵士乐队的每个乐器演奏相同的音符时,每个声音的质量是不同的 - 但音乐家会将每个音符视为具有相同的音高。大脑听觉皮质的神经元能够响应音调。et猴的研究表明,螺旋选择性神经元位于原发性听觉皮质前外侧边缘附近的皮层区域。在人类的最近的功能成像研究中也已经确定了这个位置的选音区域。初级听觉皮层是受调制由许多神经递质,包括去甲肾上腺素,这已被证明是降低细胞兴奋在所有层颞叶皮层。α-1肾上腺素能受体激活通过去 甲肾上腺素降低AMPA 受体的谷氨酸能兴奋性突触后电位。听觉皮层是大脑中最高度组织的声音处理单位。这个皮质区是听觉的神经关键,在人类语言和音乐方面。听觉皮层分为三个部分:主要,次要和三次听觉皮层。这些结构彼此同心地形成,其中初级皮层在中部和外侧的第三皮层。主要听觉皮层是tonotopically组织,这意味着皮层中的相邻细胞响应相邻的频率。频率排布映射整个最试镜电路的保留。初级听觉皮层从接收的直接输入内侧膝状核的的丘脑和因此被认为是识别音乐的基本元件,例如音高和响度。Klinke等人对先天性聋小猫的诱发反应研究利用局部场电位来测量听觉皮质中的皮质可塑性。对照(未刺激的先天性聋猫(CDC))和正常的听力猫刺激并测量这些小猫。人为刺激的CDC测量的场电位最终比正常的听力猫强得多。这个发现符合Eckart Altenmuller的一项研究,其中观察到接受音乐教学的学生比没有听力者的皮质活化更多。听觉皮层对伽马波段的声音有不同的反应。当受试者暴露于40 赫兹的三或四个周期时,EEG数据中出现异常尖峰,这不是其他刺激物质。与这种频率相关的神经元活动的峰值不受听觉皮层的tonotopic组织的限制。理论上,伽马频率是大脑某些区域的共振频率,并且似乎也影响视觉皮质。伽玛带激活(25至100 Hz)已被证明是在感知事件感知和认知过程中存在的。在Kneif及其同事2000年的一项研究中,科目被赠送八首音乐到知名音乐,如扬基涂鸦和弗雷雅克。随机地,第六和第七笔记被省略,脑电图以及脑磁图被用于测量神经结果。具体来说,由受试者的寺庙测量由手头的听觉任务引起的γ波的存在。OSP反应或省略的刺激反应位于稍微不同的位置; 相对于成套装置,前7毫米,内侧13毫米,内侧13毫米。与完整的音乐组相比,OSP录音的特征也较低。在第六和第七个省略的笔记中引发的反应被假设为想象的,并且在特征上是不同的,特别是在右半球。右听觉皮层早已被证明是更敏感的音调,而左听觉皮层已被证明是在声音分钟顺序的差异,如在语音更加敏感。音调在更多地方表现,而不仅仅是听觉皮质; 另一个特定区域是罗氏假性前额叶皮质(RMPFC)。Janata等人在2002年的研究中,通过fMRI技术探讨了在音调处理过程中活跃的大脑区域。该实验的结果显示了针对特定音调排列的RMPFC中特定体素的优先血氧水平依赖性激活。虽然这些体素的集合并不代表主体之间或多个试验中的主题相同的音调安排,但RMPFC(通常不与试听有关的区域)似乎在这方面代码立即进行音调调节,这是有趣且翔实的。RMPFC是内侧前额皮质的一个部分,可以投射到许多不同的领域,包括杏仁核,并被认为有助于抑制负面情绪。

相关

  • 纳米纳米为微米的千分之一倍(符号 nm,英式英文:nanometre、美式英文:nanometer,字首 nano 在希腊文中的原意是“侏儒”的意思),是一个长度单位,指1米的十亿分之一(10-9m)。有时候也会见到
  • 凝血血液凝固,或称为凝血指的是血液由液体状态转变为不流动的凝胶状态的过程,是生理性止血的重要环节。血液凝固的实质就是血浆中的可溶性纤维蛋白原变成不可溶的纤维蛋白的过程。
  • LGBT权利美国对女同性恋、男同性恋、双性恋与跨性别者权益的保障随着时代发展愈趋成熟。根据美国联邦最高法院劳伦斯诉得克萨斯州案判决,同性恋自2003年起已为全国合法;而有关详细规定
  • 中部Middle America,常译作“(美国的)心脏地带”“(美国的)小镇价值”“半个美国”“美国中产阶级”“中间美国”“中美”“中部美国”,是美式英语中的一句俗语,用于描述地理上的美国大
  • 啮齿目松鼠形亚目 Sciuromorpha 河狸亚目 Castorimorpha 鼠形亚目 Myomorpha 鳞尾松鼠亚目 Anomaluromorpha 豪猪亚目 Hystricomorpha啮齿目是哺乳动物中的一目,其特征为上颌和下颌
  • 淡水淡水,是水质中仅有微量溶解的氯化钠的水,是相对于海水或矿泉水的一种水体。大气降水、水汽凝结凝华、结晶水转化成自由水、火山爆发(存在争议)、彗星撞击。液态淡水和固态淡水,气
  • 哥本哈根哥本哈根(丹麦语:København, 发音 帮助·信息)是丹麦的首都、最大城市及最大港口。座落于丹麦西兰岛东部,与瑞典的马尔默隔松德海峡相望。厄勒海峡大桥在2000年完工后,哥本哈根
  • 环境雌激素环境雌激素(英语:Environmental estrogen,或称为仿雌激素、外源性雌激素 英语:Xenoestrogen),指进入人体后可产生具有模拟雌激素作用的环境毒素,会对生物有生殖方面的影响,使得幼体
  • 儿童权利儿童人权(英文:Children's rights),指的是儿童享有的各项权利,是人权的一部分。儿童人权着重强调对未成年人的特别保护及关爱。1989年联合国签署的《儿童权利公约》中将“儿童”
  • 固态瘤新生物、息肉、瘜肉或赘生物(英语:neoplasm),是指身体细胞组织不正常的增生,当生长的数量庞大,便会成为肿瘤(英语:tumor)。而肿瘤亦可以是良性或恶性的。肿瘤(英语:tumor)在医学上是指细