马吕斯定理

✍ dations ◷ 2025-12-07 20:03:26 #马吕斯定理
马吕斯定理是法国物理学家艾蒂安-路易·马吕斯在1808年阐述的一条几何光学的定理。在均匀介质中的光线束,如果有一个共点,例如从同一个点光源发射,这样的光束称为同心光束。同心光束有正交一致性,即光束中所有的一切光线,都和以同源点为中心的一切球面正交。根据光在均匀介质中传播的性质,这些球面无非是光波动光前,光线自然和波前正交。马吕斯定理:“正交一致性光束,经过无论多少次的反射和折射,始终保持正交一致”。1889年瑞利男爵在《大英百科全书》第九版《光学》条中,给出根据费马原理的证明。设同源光束与与曲面m分别在M,M'点正交;这两道光线在传播过程中经过多次反射或折射,分别与界面a相交于A,A'点;与界面b相交于B,B'点,与界面c 相交于C,C'点;经过若干反射、折射后分别到达P,P'点;令光线、 的光程相等;则所有等光程的P,P'的集合,形成一个曲面p。可证明光线与曲面p在P点正交,光线与曲面p在P'点正交,即集合p是光束的正交一致性曲面。证:作两条附加直线M'A和P'C。令M与M'无限接近,因M'A与曲面m 垂直,光线与光线之差是MM'线段的高次微小项即~。但根据费马原理的要求,=,代入前式,可得=;令第一介质和最后介质的折射率分别为n,n',则消除共同线段之后可得:n ∗ M A + n ′ ∗ C P = n ∗ M ′ A + n ′ ∗ C P ′ {displaystyle n*MA+n'*CP=n*M'A+n'*CP'}由此n ∗ ( M ′ A − M A ) + n ′ ( C P ′ − C P ) = 0 {displaystyle n*(M'A-MA)+n'(CP'-CP)=0}在M和M'无限接近时M'A=MA,于是 CP'=CP;即CP,CP'是等腰三角形的两腰,与PP'夹角相等;当其无限接近时CP,CP'合为一体,垂直于曲面p。同理可证C'P'垂直于p。

相关

  • 蜕皮动物蜕皮动物总门(拉丁语:Ecdysozoa)是一大类原口动物,包括节肢动物门、线虫动物门和几个小门。最初由Auinaldo等人于1997年定义,主要根据是18S 核糖体RNA树。而这个分类同时也被一系
  • 核裂变核裂变(德语:Kernspaltung;英语:nuclear fission),在港台称作核分裂,是指由较重的(原子序数较大的)原子,主要是指铀或钚,裂变成较轻的(原子序数较小的)原子的一种核反应或放射性衰变形式
  • 乔治·福克斯乔治·福克斯(George Fox,1624年7月-1691年1月13日)是一位英国重要的反对国教派人士。普遍认为他是贵格会(或公谊会)的创始人。他生活在一个社会剧变的时代,为了他不寻常和不妥协的
  • 巴比伦巴比伦(阿拉伯语:بابل‎ Bābil;阿卡德语:Bābili(m);苏美尔语语标符号:KÁ.DINGIR.RAKI;希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-siz
  • 激活能活化能(Activation energy)是一个化学名词,又被称为阈能。这一名词是由阿瑞尼士在1889年引入,用来定义一个化学反应的发生所需要克服的能量障碍。活化能可以用于表示一个化学反
  • 美因茨大学约翰内斯·谷登堡-美因茨大学(德语:Johannes Gutenberg-Universität Mainz),简称美因茨大学,位在德国莱茵兰-普法尔茨州首府美因茨市,以西方活字印刷术发明人约翰内斯·谷登堡之
  • 米兰-马尔彭萨机场米兰-马尔彭萨机场(意大利语:Aeroporto di Milano-Malpensa;IATA代码:MXP;ICAO代码:LIMC),位于瓦雷泽,距离米兰市中心西北方约49千米(30英里),是米兰大都会区(英语:Milan metropolitan are
  • 德舒特县德舒特县(Deschutes County, Oregon)是美国俄勒冈州中部的一个县。面积27,912平方公里。根据美国2000年人口普查,共有人口115,367人。县治本德。成立于1916年12月13日。县名来
  • 椭球体椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状
  • 科罗拉多科罗拉多州(英语:State of Colorado),简称科州,是美国西部的一州,此州最著名的是拥有洛矶山脉的最高峰,地形从东侧的平原陡然升高为西侧峻岭,地理景观十分壮丽。该州首府兼最大城为