首页 >
平面几何
✍ dations ◷ 2025-04-03 08:46:36 #平面几何
欧几里得几何指按照欧几里得的《几何原本》构造的几何学。欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。数学上,欧几里得几何是指二维平面和三维空间中的几何,基于点线面假设(英语:Point–line–plane postulate)。数学家也用这一术语表示具有相似性质的高维几何。其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss, 1777年—1855年)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利数学家波约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即非欧几何(non-Euclidean geometry)。欧几里得几何的传统描述是一个公理系统,通过有限的公理来证明所有的真命题。欧几里得平面几何的五条公理(公设)是:第五条公理称为平行公理(平行公设),可以导出下述命题:平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不能被证明的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何(英语:Absolute geometry))。从另一方面讲,欧几里得几何的五条公理(公设)并不完备。例如,该几何中的定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统(英语:Hilbert's axioms)。欧几里得还提出了五个一般概念,也可以作为公理。当然,之后他还使用量的其他性质。如今,欧几里得几何的构造通常不是通过公理化方法,而是通过解析几何。通过这种方法,可以像证明定理一样证明欧几里得几何(或非欧几里得几何)中的公理。这一方法没有公理方法那么漂亮,但绝对简练。首先,定义点的集合为实数对
(
x
,
y
)
{displaystyle (x,y)}
的集合。给定两个点
P
=
(
x
,
y
)
{displaystyle P=(x,y)}
和
Q
=
(
z
,
t
)
{displaystyle Q=(z,t)}
,定义距离:这就是欧几里得度量。所有其他概念,如直线、角、圆可以通过作为实数对的点和之间的距离来定义。例如通过点
P
{displaystyle P}
和
Q
{displaystyle Q}
的直线可以定义成点的集合
A
{displaystyle A}
满足
相关
- 布尼亚病毒目沙状病毒科 汉他病毒科 内罗毕病毒科(英语:Nairoviridae) 番茄斑萎病病毒科(英语:Tospoviridae) Phenuiviridae(英语:Phenuiviridae)本雅病毒目(Bunyavirales),又译为布尼亚病毒目,属于有
- 结核杆菌结核杆菌,即结核分枝杆菌(学名:Mycobacterium tuberculosis)是专性需氧微生物,1882年德国微生物学家罗伯·柯霍在柏林宣告它是结核病的病原体。他凭着此发现获得了1905年诺贝尔生
- 真值表真值表是使用于逻辑中(特别是在连结逻辑代数、布尔函数和命题逻辑上)的一类数学用表,用来计算逻辑表示式在每种论证(即每种逻辑变数取值的组合)上的值。尤其是,真值表可以用来判断
- 四环类抗抑郁药四环抗抑郁药(英语:tetracyclic antidepressants,缩写作 TeCAs)是一种在1907s被引入的抗抑郁药。他们是因其化学结构含有四个原子环而命名,与三环抗抑郁药紧密相关,即含有三个原子
- 光栅光栅(Grating)是一种非常重要的光学元件。广义的光栅定义为:可以使入射光的振幅或相位(或两者同时)受到周期性空间调制的光学元件。只能使光受到振幅调制或相位调制的光栅,分别称
- 莫斯科运河莫斯科运河(俄语:Канал имени Москвы,至1947年称莫斯科-伏尔加运河Канал Москва-Волга)是连接莫斯科河与俄罗斯欧洲部分的交通大动脉伏尔加河
- 过滤作用肾功能(Renal function)是描述肾脏状态及其在肾生理作用的角色。肾小球滤过率(Glomerular filtration rate/GFR、肾丝球滤过率)描述了通过肾脏过滤流体之流速。肌酸酐清除率(Crea
- 心瓣膜心瓣(heart valve),又称心瓣膜、心脏瓣膜,是心脏中内类似阀的构造,用以维持血液循环在心脏中的单向流动,防止血液倒流。哺乳动物的心脏通常具有四个瓣膜,决定了血液的流向。心瓣前
- 受教育权受教育权被认为是一种人类权利并被理解为一种自由的权利,明确了对儿童进行初级教育、对所有儿童推广中等教育的义务、平等接受高等教育的权利以及对未接受过完整初级教育的个
- 天堂陌影《天堂陌影》是1984年的一部美国荒诞喜剧电影。由吉姆·贾木许编剧及导演,前爵士乐手约翰·卢瑞尔、理查德·埃德森、匈牙利裔演员艾斯特·巴林特主演。该片在美国独立电影史