非线性系统

✍ dations ◷ 2025-06-29 11:29:53 #非线性系统,动力系统,基本物理概念

在物理科学中,如果描述某个系统的方程其输入(自变数)与输出(应变数)不成正比,则称为非线性系统。由于自然界中大部分的系统本质上都是非线性的,因此许多工程师、物理学家、数学家和其他科学家对于非线性问题的研究都极感兴趣。非线性系统和线性系统最大的差别在于,非线性系统可能会导致混沌、不可预测,或是不直观的结果。

一般来说,非线性系统的行为在数学上是用一组非线性联立方程来描述的。非线性方程里含有由未知数构成的非一次多项式;换句话说,一个非线性方程并不能写成其未知数的线性组合。而非线性微分方程,则是指方程里含有未知函数及其导函数的乘幂不等于一的项。在判定一个方程是线性或非线性时,只需考虑未知数(或未知函数)的部分,不需要检查方程中是否有已知的非线性项。例如在微分方程中,若所有的未知函数、未知导函数皆为一次,即使出现由某个已知变数所构成的非线性函数,我们仍称它是一个线性微分方程。

由于非线性方程非常难解,因此我们常常需要以线性方程来近似一个非线性系统(线性近似)。这种近似对某范围内的输入值(自变数)是很准确的,但线性近似之后反而会无法解释许多有趣的现象,例如孤波、混沌和奇点。这些奇特的现象,也常常让非线性系统的行为看起来违反直觉、不可预测,或甚至混沌。虽然“混沌的行为”和“随机的行为”感觉很相似,但两者绝对不能混为一谈;也就是说,一个混沌系统的行为绝对不是随机的。

举例来说,许多天气系统就是混沌的,微小的扰动即可导致整个系统产生各种不同的复杂结果。就目前的科技而言,这种天气的非线性特性即成了长期天气预报的绊脚石。

某些书的作者以非线性科学来代指非线性系统的研究,但也有人不以为然:

“在科学领域里使用‘非线性科学’这个词,就如同把动物学里大部分的研究对象称作‘非大象动物’一样可笑。”

在数学上,一个线性函数(映射) f ( x ) {\displaystyle f(x)} 是有理数的情况下,一个可叠加函数必定是齐次函数(在讨论线性与否时,齐次函数专指一次齐次函数);若 f ( x ) {\displaystyle f(x)} 是任意实数,就可以从叠加性推出齐次。然而在推广至任意复数 时,叠加性便再也无法导出齐次了。也就是说,在复数的世界里存在一种反线性映射,它满足叠加性,但却非齐次。叠加性和齐次这两个条件常会被合并在一起,称之为叠加原理:

对于一个表示为

的方程,如果 f ( x ) {\displaystyle f(x)} 无关的项 ,即任何项皆和 有关)。

这里 f ( x ) = C {\displaystyle f(x)=C} = 0(即通解在 趋近于无限大时的极限)。此方程是非线性的,因为它可以被改写为

而等号左边并不是 的线性映射。若把此式的 2 换成 ,则会变成线性方程(指数衰减)。

二阶和高阶非线性常微分方程组的解几乎无法表示成解析解,反而较常表为隐函数或非初等函数积分的形式。

分析常微分方程常用的方法包括:

研究非线性偏微分方程最常见也最基础的方法就是变数变换,变换以后的方程会较简单,甚至有可能会变成线性方程。有时候,变数变换后的方程可能会变成一个或两个以上的常微分方程(如同用分离变数法解偏微分方程),不管这些常微分方程可不可解,都能帮助我们了解这个系统的行为。

另一个流体力学和热力学里常用的方法(但数学性较低),是利用尺度分析来简化一个较一般性的方程,使它仅适用在某个特定的边界条件上。例如,在描述一个圆管内一维层流的暂态时,我们可以把非线性的纳维-斯托克斯方程简化成一个线性偏微分方程;这时候尺度分析提供了两个特定的边界条件:一维和层流。

其他分析非线性偏微分方程的方法还有特征线法,以及上述分析常微分方程时常用的方法。

非线性问题的一个典型的例子,就是重力作用之下单摆的运动。单摆的运动可由以下的方程来描述(用拉格朗日力学可以证明):

这是一个非线性且无量纲的方程, θ {\displaystyle \theta } 是单摆和它静止位置所夹的角度,如动画所示。此方程的一个解法是将 d θ d t {\displaystyle {\frac {d\theta }{dt}}} 视为积分因子,积分以后得

上述的解是隐解的形式,同时也包含了椭圆积分。这个解通常没有什么用,因为非初等函数积分(即使 C 0 = 0 {\displaystyle C_{0}=0} 仍然是非初等函数)把解的各种特性隐藏了起来,使我们不易看出单摆系统的行为。

另一个解法是把这个非线性方程作线性近似:利用泰勒展开式将非线性的 sine 函数线性化,并在某些特定的点附近讨论解的情形。例如,若在 θ = 0 {\displaystyle \theta =0} 的点附近作线性近似(又称小角度近似), θ 0 {\displaystyle \theta \approx 0} 时, sin ( θ ) θ {\displaystyle \sin(\theta )\approx \theta } ,故原方程可以改写为

近似后的方程变成了简谐振荡,因此当单摆运动到底部附近时,可以对应到一个简谐振子。而若在 θ = π {\displaystyle \theta =\pi } (即当单摆运动到圆弧的最高点时)附近作线性近似, sin ( θ ) = sin ( π θ ) π θ {\displaystyle \sin(\theta )=\sin(\pi -\theta )\approx \pi -\theta } ,故原方程可以改写为

这个方程的解含有双曲正弦函数,因此和小角度近似不同,这个近似是不稳定的,也就是说 | θ | {\displaystyle |\theta |} 会无限制地增加(但此近似方程的解也可能是有界的)。当我们把解对应回单摆系统后,就可以了解为什么单摆在圆弧的最高点时不能达到稳定平衡,也就是说,单摆在最高点时是不稳定的状态。

另一个有趣的线性近似是在 θ = π 2 {\displaystyle \theta ={\frac {\pi }{2}}} 附近,此时 sin ( θ ) 1 {\displaystyle \sin(\theta )\approx 1} ,故原方程可以改写为

这个近似后的方程可以对应到自由落体。

若把以上线性近似的结果合在一起看,就能大致了解单摆的运动情形。利用其他解非线性微分方程的方法,可以进一步帮助我们找到更精确的相图,或是估算单摆的周期。

相关

  • 中国宪法中国宪法列出在中国制定或施行过的宪法、宪法增修案、修正案或其他宪法性文件。由国家组织起草的重要宪法草案也一并列入。当今媒体所称的“中国宪法”多指仍在施行状态的:
  • 瘙痒痒,中医叫风瘙痒,是一种使动物有对发生部位产生抓挠欲的不快感觉,与疼痛有许多相似之处。其发生多源自周围神经系统(皮痒性和神经性)和中枢神经系统(神经性、神经源性和心理性)。皮
  • 常设国际法院常设国际法院(Permanent Court of International Justice)是第一次世界大战后国际联盟创立的通过运用法律手段解决各个国家之间争端的国际司法机关。1922年2月在海牙正式宣告
  • 条件几率本文定义了表征两个或者多个随机变量概率分布特点的术语。条件概率(英语:conditional probability)就是事件A在事件B发生的条件下发生的概率。条件概率表示为P(A|B),读作“A在B发
  • 新马路亚美打利庇卢大马路(葡萄牙语:Avenida de Almeida Ribeiro),又称新马路,是澳门中区的重要道路之一,为澳门重要的商业中枢及旅游景点。东接殷皇子大马路,从南湾大马路起,西至火船头街
  • 希维斯塔希维斯塔(英语:Hi Vista)是位于美国加利福尼亚州洛杉矶县的一个非建制地区。该地的面积和人口皆未知。希维斯塔的座标为34°44′06″N 117°46′38″W / 34.73500°N 117.77722
  • 布里奇波特 (康涅狄格州)布里奇波特(英语:Bridgeport),或译桥港,是美国康乃狄克州最大的城市 (2010年人口144,229人) 、新英格兰第五大的城市。位于长岛湾岸、佩阔诺克河河口。桥港属温带大陆性气候,四季分
  • 约翰·布伦南约翰·欧文·布伦南 (英语:John Owen Brennan,1955年9月22日-),美国官员。他于2013年3月起由担任中央情报局第23任局长。出生于新泽西州北卑尔根。1977年,于福特莫大学政治学系毕业
  • 哥伦比亚级哥伦比亚级潜艇(英语:Columbia-class submarine),又称俄亥俄级替换者潜艇(英语:Ohio Replacement Submarine),是美国海军开发中的核潜艇,用于取代俄亥俄级下一代核潜艇。预计2021年开
  • 约翰·拜艾兹 约翰·卡洛斯·拜艾兹(英语:John Carlos Baez,/ˈbaɪ.ɛz/,1961年6月12日-)为美国数学物理学家,任教于加州大学河滨分校数学系。其以研究循环量子引力理论中自旋泡沫著名。近