首页 >
关联
✍ dations ◷ 2025-12-08 19:45:02 #关联
在概率论和统计学中,相关(Correlation),显示两个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许多根据数据特点而定义的用来衡量数据相关的系数。英国生物学家和统计学家弗朗西斯·高尔顿首先提出“相关”这一概念,英国数学家卡尔·皮尔逊在此基础上做出了进一步发展。对于不同测量尺度的变数,有不同的相关系数可用:其中,E是数学期望,cov表示协方差,
σ
X
{displaystyle sigma _{X}}
和
σ
Y
{displaystyle sigma _{Y}}
是标准差。因为
μ
X
=
E
(
X
)
{displaystyle mu _{X}=E(X)}
,
σ
X
2
=
E
(
X
2
)
−
E
2
(
X
)
{displaystyle sigma _{X}^{2}=E(X^{2})-E^{2}(X)}
,同样地,对于
Y
{displaystyle Y}
,可以写成当两个变量的标准差都不为零,相关系数才有定义。从柯西-施瓦茨不等式可知,相关系数的绝对值不超过1。当两个变量的线性关系增强时,相关系数趋于1或-1。当一个变量增加而另一变量也增加时,相关系数大于0。当一个变量的增加而另一变量减少时,相关系数小于0。当两个变量独立时,相关系数为0,但反之并不成立。这是因为相关系数仅仅反映了两个变量之间是否线性相关。比如说,X是区间[-1,1]上的一个均匀分布的随机变量。Y = X2.那么Y是完全由X确定。因此Y和X不独立,但相关系数为0。或者说他们是不相关的。当Y和X服从联合正态分布时,其相互独立和不相关是等价的。当一个或两个变量带有测量误差时,他们的相关性就受到削弱,这时,“反衰减”性(disattenuation)是一个更准确的系数。对于居中的数据来说(何谓居中?也就是每个数据减去样本均值,居中后它们的平均值就为0),相关系数可以看作是两个随机变量中得到的样本集向量之间夹角的cosine函数。一些实际工作者更喜欢用非居中的相关系数(与皮尔逊系数不相兼容)。看下面的例子中有一个比较。例如,假设五个国家的国民生产总值分别是1、2、3、5、8(单位10亿美元),又假设这五个国家的贫困比例分别是11%、12%、13%、15%、18%。则我们现在有两个有序的包含5个元素的向量x、y:x =(1, 2, 3, 5, 8)、 y =(0.11, 0.12, 0.13, 0.15, 0.18)
使用一般的方法来计算向量间夹角(参考数量积),未居中的相关性系数如下:上面的数据实际上是故意选择了一个完美的线性关系:y = 0.10 + 0.01 x。因此皮尔逊相关系数应该就是1。把数据居中(x中数据减去E (x) = 3.8,y中数据减去E (y) = 0.138)后得到:x =(−2.8, −1.8, −0.8, 1.2, 4.2)、y =(−0.028, −0.018, −0.008, 0.012, 0.042),由此得到了预期结果:相关系数的计算过程可表示为:将每个变量都转化为标准单位,乘积的平均数即为相关系数。两个变量的关系可以直观地用散点图表示,当其紧密地群聚于一条直线的周围时,变量间存在强相关。一个散点图可以用五个统计量来概括。所有x值得平均数,所有x值的SD,所有y值得平均数,所有y值的SD,相关系数r.将第一个变量记为x ,第二个变量记为y ,相关系数为r,则可以通过以下公式:r = 的平均数
相关
- 血清型血清型是指病毒和细菌中特定不同的亚种。这些微生物一般都由细胞表层的抗原来分类命名的。但是在同一种类的微生物里也会有分支和不同。血清型的决定是由很多种类的因素而形
- 药物成瘾物质依赖(英语:Substance dependence)或称药物成瘾(drug addiction),指需要服用药物才能使日常生活表现正常的强迫行为。出现物质依赖状况后,若突然停止服用药物,可能出现药物戒断症
- 脊椎脊柱(拉丁语:Columna vertebralis、英语:vertebral column、backbone、spine)是脊椎动物位于背侧的支撑性中轴骨骼。人类的脊柱由23-24块脊椎骨(拉丁语:Vertebrae)和中间起缓冲作用
- 历史联合国是第二次世界大战结束后成立的国际组织。自那时起,联合国逐步拓展了其目标与行动范畴,在21世纪初已发展成为了典型的国际性机构。美国总统富兰克林·罗斯福是最先使用“
- 泌尿科人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学泌尿外科是专门研究男女泌尿系统与男
- 柏林自由大学柏林自由大学(德语:Freie Universität Berlin, FU Berlin)成立于1948年12月4日,前身为柏林大学,主校址位于柏林达雷姆(英语:Dahlem (Berlin))(Berlin-Dahlem)。为德国首都地区四所大
- 学科这是一个学科的列表。学科是在大学教学(教育)与研究的知识分科。学科是被发表研究和学术杂志、学会和系所所定义及承认的。领域通常有子领域或分科,而其之间的分界是随便且模
- 去甲基肾上腺素去甲肾上腺素(INN名称:Norepinephrine、nor-epinephrine,也称Noradrenaline、nor-adrenaline--,缩写NE或NA),旧称正肾上腺素,学名1-(3,4-二羟苯基)-2-氨基乙醇,是肾上腺素去掉 N-甲
- 岱喃字陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧ 小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧ 书法 ‧ 飞白书笔画 ‧
- 全角·半角全角和半角,是计算机中,中、日、韩文的CJKV字符的显示格式。传统上,英语或拉丁字母语言使用的电脑系统,每一个字母或符号,都是使用一字节的空间(一字节由8比特组成,共256个编码空间
