埃伦费斯特定理

✍ dations ◷ 2025-04-26 02:40:58 #埃伦费斯特定理
在量子力学里,埃伦费斯特定理(Ehrenfest theorem)表明,量子算符的期望值对于时间的导数,跟这量子算符与哈密顿算符的对易算符,两者之间的关系,以方程表达为其中, A {displaystyle A} 是某个量子算符, ⟨ A ⟩ {displaystyle langle Arangle } 是它的期望值, H {displaystyle H} 是哈密顿算符, t {displaystyle t} 是时间, ℏ {displaystyle hbar } 是约化普朗克常数。埃伦费斯特定理是因物理学家保罗·埃伦费斯特命名。在量子力学的海森堡绘景里,埃伦费斯特定理非常显而易见;取海森堡方程的期望值,就可以得到埃伦费斯特定理。埃伦费斯特定理与哈密顿力学的刘维尔定理密切相关;刘维尔定理使用的泊松括号,对应于埃伦费斯特定理的对易算符。实际上,从根据经验法则,将对易算符换为泊松括号乘以 i ℏ {displaystyle ihbar } ,再取 i ℏ {displaystyle ihbar } 趋向于 0 的极限,含有对易算符的量子定理就可以改变为含有泊松括号的经典定理。假设,一个物理系统的量子态为 Φ ( x ,   t ) {displaystyle Phi (x, t)} ,则算符 A {displaystyle A} 的期望值对于时间的导数为薛定谔方程表明哈密顿算符 H {displaystyle H} 与时间 t {displaystyle t} 的关系为其共轭复数为因为哈密顿算符是厄米算符, H ∗ = H {displaystyle H^{*}=H} 。所以,将这三个方程代入 d d t ⟨ A ⟩ {displaystyle {frac {d}{dt}}langle Arangle } 的方程,则可得到所以,埃伦费斯特定理成立:使用埃伦费斯特定理,可以简易地证明,假若一个物理系统的哈密顿量显性地不含时间,则这系统是保守系统。从埃伦费斯特定理,可以计算任何算符的期望值对于时间的导数。特别而言,速度的期望值和加速度的期望值。知道这些资料,就可以分析量子系统的运动行为。思考哈密顿算符 H {displaystyle H} :假若,哈密顿量显性地不含时间, ∂ H ∂ t = 0 {displaystyle {frac {partial H}{partial t}}=0} ,则哈密顿量是个常数 H 0 {displaystyle H_{0}} 。试想一个质量为 m {displaystyle m} 的粒子,移动于一维空间.其哈密顿量是其中, x {displaystyle x} 为位置, p {displaystyle p} 是动量, V {displaystyle V} 是位势。应用埃伦费斯特定理,由于 x p p − p p x = i 2 ℏ p {displaystyle xpp-ppx=i2hbar p} ,位置的期望值对于时间的导数等于速度的期望值:这样,可以得到动量 p {displaystyle p} 的期望值。应用埃伦费斯特定理,由于 p {displaystyle p} 与自己互相交换,所以, [ p ,   p 2 ] = 0 {displaystyle =0} 。又在坐标空间里,动量算符 p = ℏ i ∂ ∂ x {displaystyle p={frac {hbar }{i}}{frac {partial }{partial x}}} 不含时间: ∂ p ∂ t = 0 {displaystyle {frac {partial p}{partial t}}=0} 。所以,将泊松括号展开,使用乘法定则,在量子力学里,动量的期望值对于时间的导数,等于作用力 F {displaystyle F} 的期望值。取经典极限, ⟨ ∂ V ( x ) ∂ x ⟩ ≈ ∂ V ( ⟨ x ⟩ ) ∂ ⟨ x ⟩ {displaystyle leftlangle {frac {partial V(x)}{partial x}}rightrangle approx {frac {partial V(langle xrangle )}{partial langle xrangle }}} ,则可得到一组完全的量子运动方程:这组量子运动方程,精确地对应于经典力学的运动方程:取“经典极限”,量子力学的定律约化为经典力学的定律。这结果也时常被称为埃伦费斯特定理。这经典极限是什么呢?标记 V ′ ( x ) {displaystyle V,'(x)} 为 ∂ V ( x ) ∂ x {displaystyle {frac {partial V(x)}{partial x}}} 。设定 ⟨ x ⟩ = x 0 {displaystyle langle xrangle =x_{0}} 。泰勒展开 V ′ ( x ) {displaystyle V,'(x)} 于 x 0 {displaystyle x_{0}} :由于 ⟨ x − x 0 ⟩ = 0 {displaystyle langle x-x_{0}rangle =0} , ⟨ ( x − x 0 ) 2 ⟩ = σ x 2 {displaystyle langle (x-x_{0})^{2}rangle =sigma _{x}^{2}} ,这近似方程右手边的第二项目就是误差项目。只要这误差项目是可忽略的,就可以取经典极限。而这误差项目的大小跟以下两个因素有关:

相关

  • 性成瘾性成瘾(英语:Sexual addiction),也称性瘾、嗜性、性上瘾或做爱上瘾症,是一种尽管得到了负反馈,依然想要进行性活动(自慰或非直接性交)(特别是性交)的强迫行为。支持为性成瘾症建立一个
  • 接头蛋白信号转导接头蛋白或信号转导衔接蛋白(英语:Signal transducing adaptor proteins)是信号转导通路中的重要蛋白质。接头蛋白上有着各种能与其它蛋白结合的结构域,能形成各种信号
  • 螺旋酶螺旋酶(英语:Helicases,又译解旋酶或解螺旋酶)是所有生物体维持生命所必需的一类酶,可分为多种类型。这类酵素是能够依循核酸磷酸双酯骨架(phosphodiester backbone)的方向性,而往特
  • 埃里克·萨蒂埃里克·阿尔弗雷德·莱斯利·萨蒂(法语:Éric Alfred Leslie Satie,1866年5月17日-1925年7月1日),后来自己改名为Erik Satie,法国作曲家。他被法国音乐团体“六人团”尊为导师,是二
  • 涅槃涅槃(巴利语:निब्बान Nibbāna;梵语:निर्वाण Nirvāṇa),佛教术语,合文作
  • 林在培林在培(1957年02月20日-),生于台湾台北,籍贯浙江鄞县,中华民国男歌手与男演员。与妻子“紫琳”同是台视新人奖歌唱比赛出身,原为台视基本歌星出身,转往戏剧演出发展颇成功,曾经获得19
  • 3,3-二甲基-1-丁醇3,3-二甲基-1-丁醇(英语:3,3-Dimethyl-1-butanol,缩写DMB,又称为新己醇)是一种醇类的有机化合物,是胆碱的结构类似物。DMB抑制小鼠和人粪便微生物的三甲胺(TMA)形成,从而减少胆碱和肉
  • 振兴中华振兴中华是近代中国领导人提出的执政理念,最早由中国国民党创始人孙中山提出。
  • 加加林国外奖励:尤里·阿列克谢耶维奇·加加林(俄语:Юрий Алексеевич Гагарин,1934年3月9日-1968年3月27日),苏联航天员,苏联红军上校飞行员,是首个进入太空的人类。1
  • 骄傲骄傲(英语:Pride),又写为憍傲,是一种内在的情绪状态,一般而言,有两大类常见的意涵。作为负面的意思,骄傲是指一种对于个人的地位或成就的自我膨胀与炫耀,通常与傲慢(hubris)是同义词。