埃伦费斯特定理

✍ dations ◷ 2025-02-23 21:47:55 #埃伦费斯特定理
在量子力学里,埃伦费斯特定理(Ehrenfest theorem)表明,量子算符的期望值对于时间的导数,跟这量子算符与哈密顿算符的对易算符,两者之间的关系,以方程表达为其中, A {displaystyle A} 是某个量子算符, ⟨ A ⟩ {displaystyle langle Arangle } 是它的期望值, H {displaystyle H} 是哈密顿算符, t {displaystyle t} 是时间, ℏ {displaystyle hbar } 是约化普朗克常数。埃伦费斯特定理是因物理学家保罗·埃伦费斯特命名。在量子力学的海森堡绘景里,埃伦费斯特定理非常显而易见;取海森堡方程的期望值,就可以得到埃伦费斯特定理。埃伦费斯特定理与哈密顿力学的刘维尔定理密切相关;刘维尔定理使用的泊松括号,对应于埃伦费斯特定理的对易算符。实际上,从根据经验法则,将对易算符换为泊松括号乘以 i ℏ {displaystyle ihbar } ,再取 i ℏ {displaystyle ihbar } 趋向于 0 的极限,含有对易算符的量子定理就可以改变为含有泊松括号的经典定理。假设,一个物理系统的量子态为 Φ ( x ,   t ) {displaystyle Phi (x, t)} ,则算符 A {displaystyle A} 的期望值对于时间的导数为薛定谔方程表明哈密顿算符 H {displaystyle H} 与时间 t {displaystyle t} 的关系为其共轭复数为因为哈密顿算符是厄米算符, H ∗ = H {displaystyle H^{*}=H} 。所以,将这三个方程代入 d d t ⟨ A ⟩ {displaystyle {frac {d}{dt}}langle Arangle } 的方程,则可得到所以,埃伦费斯特定理成立:使用埃伦费斯特定理,可以简易地证明,假若一个物理系统的哈密顿量显性地不含时间,则这系统是保守系统。从埃伦费斯特定理,可以计算任何算符的期望值对于时间的导数。特别而言,速度的期望值和加速度的期望值。知道这些资料,就可以分析量子系统的运动行为。思考哈密顿算符 H {displaystyle H} :假若,哈密顿量显性地不含时间, ∂ H ∂ t = 0 {displaystyle {frac {partial H}{partial t}}=0} ,则哈密顿量是个常数 H 0 {displaystyle H_{0}} 。试想一个质量为 m {displaystyle m} 的粒子,移动于一维空间.其哈密顿量是其中, x {displaystyle x} 为位置, p {displaystyle p} 是动量, V {displaystyle V} 是位势。应用埃伦费斯特定理,由于 x p p − p p x = i 2 ℏ p {displaystyle xpp-ppx=i2hbar p} ,位置的期望值对于时间的导数等于速度的期望值:这样,可以得到动量 p {displaystyle p} 的期望值。应用埃伦费斯特定理,由于 p {displaystyle p} 与自己互相交换,所以, [ p ,   p 2 ] = 0 {displaystyle =0} 。又在坐标空间里,动量算符 p = ℏ i ∂ ∂ x {displaystyle p={frac {hbar }{i}}{frac {partial }{partial x}}} 不含时间: ∂ p ∂ t = 0 {displaystyle {frac {partial p}{partial t}}=0} 。所以,将泊松括号展开,使用乘法定则,在量子力学里,动量的期望值对于时间的导数,等于作用力 F {displaystyle F} 的期望值。取经典极限, ⟨ ∂ V ( x ) ∂ x ⟩ ≈ ∂ V ( ⟨ x ⟩ ) ∂ ⟨ x ⟩ {displaystyle leftlangle {frac {partial V(x)}{partial x}}rightrangle approx {frac {partial V(langle xrangle )}{partial langle xrangle }}} ,则可得到一组完全的量子运动方程:这组量子运动方程,精确地对应于经典力学的运动方程:取“经典极限”,量子力学的定律约化为经典力学的定律。这结果也时常被称为埃伦费斯特定理。这经典极限是什么呢?标记 V ′ ( x ) {displaystyle V,'(x)} 为 ∂ V ( x ) ∂ x {displaystyle {frac {partial V(x)}{partial x}}} 。设定 ⟨ x ⟩ = x 0 {displaystyle langle xrangle =x_{0}} 。泰勒展开 V ′ ( x ) {displaystyle V,'(x)} 于 x 0 {displaystyle x_{0}} :由于 ⟨ x − x 0 ⟩ = 0 {displaystyle langle x-x_{0}rangle =0} , ⟨ ( x − x 0 ) 2 ⟩ = σ x 2 {displaystyle langle (x-x_{0})^{2}rangle =sigma _{x}^{2}} ,这近似方程右手边的第二项目就是误差项目。只要这误差项目是可忽略的,就可以取经典极限。而这误差项目的大小跟以下两个因素有关:

相关

  • 泮托拉唑泮托拉唑(英语:Pantoprazole,常用商品名有:Somac、Tecta、Pantoloc、Controloc、Panprax、Pansiv、Protium、Prazolin、Protonix、Pantecta、Pantoheal、Pantpas、Ppi-40以及Neo
  • World Organisation for Animal Health世界动物卫生组织(法语:Organisation mondiale de la santé animale,缩写来自旧名-“国际兽疫局”,法语:Office international des épizooties, OIE),是1924年成立的一个国际组织
  • 心肺运动测试心脏压力测试(英语:Cardiac stress test)也称为心脏诊断测试(英语:Cardiac diagnostic test)或心肺运动测试(英语:Cardiopulmonary exercise test),是有关心脏病学的测试,是在受控的临
  • 核转运蛋白核转运蛋白(英语:Karyopherins)是一组蛋白质,负责真核细胞细胞质和细胞核之间的分子运输(英语:transport protein),核转运蛋白介导运输会在核孔间发生。大多数的蛋白质都需要核转运
  • 鲜味鲜味(日语:うま味, 英语:umami)和甜、酸、苦、咸一样,为五种基本味觉之一。其词源源自日语“旨味”,概念泛指某种食物十分美味。20世纪以来,科学家一直争论鲜味是否确实是一种基本
  • 赫尔曼·闵可夫斯基赫尔曼·闵可夫斯基(德语:Hermann Minkowski,1864年6月22日-1909年1月12日),德国数学家,犹太人,四维时空理论的创立者,曾经是著名物理学家爱因斯坦的老师。闵可夫斯基1864年出生于俄
  • 财政大臣加拿大财政部(英语:Department of Finance Canada)是加拿大联邦政府负责财政事务的行政部门,位于渥太华。加拿大财政部设置下列机构:
  • 深圳市第二人民医院深圳市第二人民医院,(本地简称为“市二医院”)现在又称深圳大学第一附属医院。原名深圳市红十字会医院,前身为华强集团改制前的企业医院,年长的深圳居民有称其为华强医院。目前的
  • 圣人列表这是基督宗教圣人的不完全的列表,依基督徒姓名(若有必要的话以姓名中的姓、地名或定语)的首字母顺序排列。总共有超过10,000名被罗马天主教会列圣(宣圣)的圣人和宣福(beatified)的
  • 痤疮丙酸杆菌痤疮丙酸杆菌(学名:Propionibacterium acnes)是和皮肤疾病粉刺息息相关,是一种生长相对缓慢的典型革兰氏阳性菌,杆状,兼性厌氧。它会引起慢性睑炎以及眼内炎,特别是后者还需要眼科