首页 >
埃伦费斯特定理
✍ dations ◷ 2025-06-28 18:46:14 #埃伦费斯特定理
在量子力学里,埃伦费斯特定理(Ehrenfest theorem)表明,量子算符的期望值对于时间的导数,跟这量子算符与哈密顿算符的对易算符,两者之间的关系,以方程表达为其中,
A
{displaystyle A}
是某个量子算符,
⟨
A
⟩
{displaystyle langle Arangle }
是它的期望值,
H
{displaystyle H}
是哈密顿算符,
t
{displaystyle t}
是时间,
ℏ
{displaystyle hbar }
是约化普朗克常数。埃伦费斯特定理是因物理学家保罗·埃伦费斯特命名。在量子力学的海森堡绘景里,埃伦费斯特定理非常显而易见;取海森堡方程的期望值,就可以得到埃伦费斯特定理。埃伦费斯特定理与哈密顿力学的刘维尔定理密切相关;刘维尔定理使用的泊松括号,对应于埃伦费斯特定理的对易算符。实际上,从根据经验法则,将对易算符换为泊松括号乘以
i
ℏ
{displaystyle ihbar }
,再取
i
ℏ
{displaystyle ihbar }
趋向于 0 的极限,含有对易算符的量子定理就可以改变为含有泊松括号的经典定理。假设,一个物理系统的量子态为
Φ
(
x
,
t
)
{displaystyle Phi (x, t)}
,则算符
A
{displaystyle A}
的期望值对于时间的导数为薛定谔方程表明哈密顿算符
H
{displaystyle H}
与时间
t
{displaystyle t}
的关系为其共轭复数为因为哈密顿算符是厄米算符,
H
∗
=
H
{displaystyle H^{*}=H}
。所以,将这三个方程代入
d
d
t
⟨
A
⟩
{displaystyle {frac {d}{dt}}langle Arangle }
的方程,则可得到所以,埃伦费斯特定理成立:使用埃伦费斯特定理,可以简易地证明,假若一个物理系统的哈密顿量显性地不含时间,则这系统是保守系统。从埃伦费斯特定理,可以计算任何算符的期望值对于时间的导数。特别而言,速度的期望值和加速度的期望值。知道这些资料,就可以分析量子系统的运动行为。思考哈密顿算符
H
{displaystyle H}
:假若,哈密顿量显性地不含时间,
∂
H
∂
t
=
0
{displaystyle {frac {partial H}{partial t}}=0}
,则哈密顿量是个常数
H
0
{displaystyle H_{0}}
。试想一个质量为
m
{displaystyle m}
的粒子,移动于一维空间.其哈密顿量是其中,
x
{displaystyle x}
为位置,
p
{displaystyle p}
是动量,
V
{displaystyle V}
是位势。应用埃伦费斯特定理,由于
x
p
p
−
p
p
x
=
i
2
ℏ
p
{displaystyle xpp-ppx=i2hbar p}
,位置的期望值对于时间的导数等于速度的期望值:这样,可以得到动量
p
{displaystyle p}
的期望值。应用埃伦费斯特定理,由于
p
{displaystyle p}
与自己互相交换,所以,
[
p
,
p
2
]
=
0
{displaystyle =0}
。又在坐标空间里,动量算符
p
=
ℏ
i
∂
∂
x
{displaystyle p={frac {hbar }{i}}{frac {partial }{partial x}}}
不含时间:
∂
p
∂
t
=
0
{displaystyle {frac {partial p}{partial t}}=0}
。所以,将泊松括号展开,使用乘法定则,在量子力学里,动量的期望值对于时间的导数,等于作用力
F
{displaystyle F}
的期望值。取经典极限,
⟨
∂
V
(
x
)
∂
x
⟩
≈
∂
V
(
⟨
x
⟩
)
∂
⟨
x
⟩
{displaystyle leftlangle {frac {partial V(x)}{partial x}}rightrangle approx {frac {partial V(langle xrangle )}{partial langle xrangle }}}
,则可得到一组完全的量子运动方程:这组量子运动方程,精确地对应于经典力学的运动方程:取“经典极限”,量子力学的定律约化为经典力学的定律。这结果也时常被称为埃伦费斯特定理。这经典极限是什么呢?标记
V
′
(
x
)
{displaystyle V,'(x)}
为
∂
V
(
x
)
∂
x
{displaystyle {frac {partial V(x)}{partial x}}}
。设定
⟨
x
⟩
=
x
0
{displaystyle langle xrangle =x_{0}}
。泰勒展开
V
′
(
x
)
{displaystyle V,'(x)}
于
x
0
{displaystyle x_{0}}
:由于
⟨
x
−
x
0
⟩
=
0
{displaystyle langle x-x_{0}rangle =0}
,
⟨
(
x
−
x
0
)
2
⟩
=
σ
x
2
{displaystyle langle (x-x_{0})^{2}rangle =sigma _{x}^{2}}
,这近似方程右手边的第二项目就是误差项目。只要这误差项目是可忽略的,就可以取经典极限。而这误差项目的大小跟以下两个因素有关:
相关
- 锌3d10 4s22, 8, 18, 2蒸气压第一:906.4 kJ·mol−1 第二:1733.3 kJ·mol−1 第三:3833 kJ·mol−1 (主条目:锌的同位素锌(英语:zinc)是化学元素,化学符号是Zn,原子序数是30,相对原子
- 陆奥宗光陆奥宗光(1844年8月20日-1897年8月24日)是日本明治时代的政治家和外交官。有剃刀大臣(カミソリ大臣)的外号,正二位・勲一等・伯爵。家纹是仙台牡丹。陆奥生于纪州和歌山藩,原名“阳
- 癌症分期癌症分期(英语:cancer staging)是决定癌症发展与扩散程度的方法。当代的作法是将一种癌症以数字分成第一到第五期,第一期指的是能分离出癌细胞,第五期代表癌细胞已经扩散到测量方
- 脑波脑波(英语:brainwave)是指人脑内的神经细胞活动时所产生的电气性摆动。因这种摆动呈现在科学仪器上,看起来就像波动一样,故称之为脑波。用一句话来说明脑波的话,或许可以说它是由
- 费德里柯·费里尼费德里柯·费里尼(意大利语:Federico Fellini,1920年1月20日-1993年10月31日),意大利艺术电影导演,同时也是演员及作家。费德里柯·费里尼出生于意大利的里米尼市,并在意大利电影导
- 超现实主义超现实主义(法语:Surréalisme)是在法国开始的文化运动,直接地源于达达主义,于1920年至1930年间盛行于欧洲文学及艺术界中。其理论背景为弗洛伊德的精神分析学说和帕格森的直觉主
- 特性辐射当高速高能电子撞击原子中的电子,使被撞击电子脱离原本的原子能级,而该层出现空位时会造成高能级电子往下递补,此时损失的能量将转换成特性辐射。以乳房摄影为主。 因此摄影使
- 非典型自闭症待分类的广泛性发展障碍(Pervasive Developmental Disorder Not Otherwise Specified;简称PDD-NOS),亦作非典型自闭症,泛指一般有自闭症倾向,但不能透过其特征而归类为更具体的
- 全内反射全内反射(英语:Total Internal Reflection),又称全反射,是一种光学现象。当光线经过两个不同折射率的介质时,部分的光线会于介质的界面被折射,其余的则被反射。但是,当入射角比临界
- Huffington Post《赫芬顿邮报》(英语:Huffpost,原名英语:The Huffington Post)是一个美国的多语言网络传媒。该传媒由阿里安娜·赫芬顿、肯尼斯·勒利尔(英语:Kenneth Lerer)、安德鲁·布莱巴特及乔