边值问题

✍ dations ◷ 2024-12-23 01:38:47 #微分方程,边界条件

在微分方程中,边值问题是一个微分方程和一组称之为边界条件的约束条件。边值问题的解通常是符合约束条件的微分方程的解。

物理学中经常遇到边值问题,例如波动方程等。许多重要的边值问题属于Sturm-Liouville问题。这类问题的分析会和微分算子的本征函数有关。

在实际应用中,边值问题应当是适定的(即:存在解,解唯一且解会随着初始值连续的变化)。许多偏微分方程领域的理论提出是为要证明科学及工程应用的许多边值问题都是适定问题。

最早研究的边值问题是狄利克雷问题,是要找出调和函数,也就是拉普拉斯方程的解,后来是用狄利克雷原理找到相关的解。

边值问题类似初值问题,边值问题的条件是在区域的边界上,而初值问题的条件都是在独立变量及其导数在某一特定值时的数值(一般是定义域的下限,所以称为初值问题)。

例如独立变量是时间,定义域为,边值问题的条件会是 y ( t ) {\displaystyle y(t)} t = 0 {\displaystyle t=0} t = 1 {\displaystyle t=1} 时的数值,而初值问题的条件会是 t = 0 {\displaystyle t=0} 时的 y ( t ) {\displaystyle y(t)} y ( t ) {\displaystyle y'(t)} 之值。

若铁棒的一端为绝对零度,另一端温度为水的凝固点,要找到铁棒温度随位置的变化即为一个边值问题。

若问题和时间和空间都有关,边界条件需为某一个特定点下所有时间对应的值,以及某一个特定时间时所有位置对应的值。

以下是一个边值问题的例子

要求解满足以下边界条件的函数 y ( x ) {\displaystyle y(x)}

若没有边界条件,以上微分方程的通解是

根据边界条件 y ( 0 ) = 0 {\displaystyle y(0)=0} ,可得

可以得到 B = 0 {\displaystyle B=0} 的结论。根据边界条件 y ( π / 2 ) = 2 {\displaystyle y(\pi /2)=2} ,可得

因此 A = 2 {\displaystyle A=2} 。因此可以找到满足上述边界条件的唯一解,即为

根据条件的形式,边值条件分以下三类:

边值条件也可以根据边值问题对应的微分算子来分类:若是使用椭圆算子,则问题为椭圆边值问题;使用双曲线算子,则问题为双曲线边值问题。依微分算子还可以将问题再细分为线性及非线性等。

相关

  • 胶原蛋白胶原蛋白(collagen) 占哺乳类动物总蛋白质约20% ,也是人体的一种非常重要的蛋白质,主要存在于结缔组织中。它有很强的伸张能力,是韧带的主要成分,胶原蛋白也是细胞外基质的主要组
  • 苏拉明苏拉明(英语:Suramin)是一种药品,用以治疗蟠尾丝虫症,和尚未进犯中枢神经系统的非洲人类锥虫病,给药方法是经由静脉注射。苏拉明会造成不少副作用,常见的有恶心、呕吐、腹泻、头痛
  • 塞萨洛尼基塞萨洛尼基(英语: Thessaloniki; 希腊语: Θεσσαλονίκη),又译作萨洛尼卡、塞萨洛尼卡、萨罗尼加,旧译作帖撒罗尼迦或忒萨洛尼卡(按古希腊语发音),是希腊第二大城市,也是
  • 伊壁鸠鲁伊壁鸠鲁(Ἐπίκουρος,前341年-前270年)古希腊哲学家、伊壁鸠鲁学派的创始人。伊壁鸠鲁成功地发展了阿瑞斯提普斯(Aristippus)的享乐主义,并将之与德谟克利特的原子论结合起
  • 尿滞留尿潴留(英语:renal retention或 urinary retention),又称尿滞留、尿液滞留,是膀胱内的尿液无法排出的状况,最常见的原因是良性前列腺增生症。正常成年男性的膀胱涨满时,容积约为500
  • 麦肯锡公司麦肯锡公司(英语:McKinsey & Company,简称麦肯锡)为一所由芝加哥大学会计系教授詹姆斯·麦肯锡创立于芝加哥的管理咨询公司,营运重点是为企业或政府的高层干部献策、针对庞杂的经
  • 隐藏字幕隐藏字幕(Closed Captioning,简称CC)是电视节目或影碟中为有特殊情况或者需要的观众而准备的字幕,例如观众在听力上有障碍,或者需要无音条件下观赏节目。此时字幕中可使用一些解
  • Church Committee丘奇委员会(Church Committee)是美国参议院情报特别委员会为研究政府情报活动的常用名称,是一个在1975年由弗兰克·丘奇(民主党)主持的美国参议院委员会,它是美国国会参议院情报特
  • 官房学派官房学派(英语:Cameralism,17世纪),又称作重商主义的官房学派,又译作“官房学”、“官房主义”,是重商主义的一种形式,强调促进国家福利状况,认为增加国家的黄金、白银等货币能增强国
  • 乔治·比才乔治·比才(法语:Georges Bizet,1838年10月25日-1875年6月3日),法国作曲家。比才著名的作品包括歌剧《卡门》、戏剧配乐《阿莱城的姑娘》等。比才生于巴黎,本名Alexandre César L