四氮化四硫

✍ dations ◷ 2025-11-06 10:48:38 #爆炸物,氮-硫化合物,氮化物

四氮化四硫(分子式:S4N4)是最重要的硫-氮二元化合物,室温下为橙黄色的固体。它的结构和成键较特殊,也是制备其他含S-N键化合物时最主要的原料,因此成为化学家研究的焦点之一。

氮和硫电负性相近,容易形成共价键相连的S-N环系,其中不少是S4N4的衍生物。同族的Se和Te也很容易生成一系列相似的含X-N键(X = 氧族元素)的化合物。

S4N4为双楔形笼状结构,具有D2d对称。硫和氮交替构成一个假想的八元环,每一对硫原子中S-S相距2.586Å(由X单晶衍射测定)。 同价的Se4N4结构类似。

四氮化四硫分子中,S-N键长几乎相等,存在电子离域。S-S“跨环”相互作用的距离要比范德华力的距离小得多,这个现象可以用分子轨道理论来解释, 但其实际原因仍然有争议。 1970年时Gleiter提出了一个目前接受得比较广的理论:从分子对称性上看,S4N4若为4h的平面型结构,那么它将成为一个12π的平面体系,基态为三线态,会受到姜-泰勒效应的影响而发生构型扭曲。将其构型畸变为非平面的2d型结构后,2u LUMO和g HOMO的顺序交换,基态时变为单线态,能量降低,而且分子中也可以产生硫-硫跨环作用加以稳定,因此是有利的一个构型。

S4N4生成热为正值(460kJ/mol),属于所谓“吸热化合物”,在热力学上不稳定。虽然它在常温下还算稳定,但研磨、摩擦、撞击、震动和迅速加热时,四氮化四硫都会猛烈分解并引起爆炸,生成非常稳定的产物:

越纯的四氮化四硫爆炸性越强。热力学不稳定而动力学稳定的分子中,大多数结构较为复杂,结构简单的不多,而四氮化四硫即是一例。

四氮化四硫为热色性固体,低于-30°C时为淡黄色,室温下为橙黄色,高于100°C时为深红色。

四氮化四硫的传统制备方法,是用干燥的氨作用于S2Cl2的四氯化碳溶液,并用二�烷萃取:

也可用NH4Cl代替反应物中的氨:

较新的方法利用2S来引入S-N键。这个化合物可由双(三甲基硅基)氨基锂与SCl2反应制得:

然后用制得的2S与SCl2和SO2Cl2的混合物反应,制取S4N4

四氮化四硫与其他化合物发生的一系列反应主要可分为两类,一类是S4N4环系保持的反应,一类是环系被破坏的反应。大多数研究着重于与有机金属化合物的反应。

S4N4会与Vaska配合物()发生氧化加成反应,生成含六配位铱的配合物,其中S4N4中的两个硫原子和一个氮原子作配位原子。蔡斯盐也可与四氮化四硫发生类似反应,生成铂(IV)的配合物。

S4N4与2−阴离子反应,S4N4环系打开,生成三个钯配合物。

与碘化氢或氯化氢的反应也属于这一类:

S4N4是路易斯碱,氮原子上的孤对电子可与路易斯酸紧密配合,如BF3、SbCl5和SO3。这些加合物中,四氮化四硫的环形结构发生扭曲,电子离域的程度也可能减弱。

与S4N4反应的产物中,硫原子与金属配位,并且会异构为氮原子也发生配位的另一个配合物。

四氮化四硫可被HBF4质子化:

“软酸”CuCl可与四氮化四硫生成共聚合物,其中S4N4环作桥联配体:

S4N4可在碱性条件下水解,稀NaOH中S4N4的反应如下:

碱性增大时,产物变为亚硫酸根:

四氮化四硫可用作制取其他重要S-N化合物的原料。

−:

四氮化四硫与哌啶反应产生−阴离子:

在搅拌下,使叠氮化钠与四氮化四硫在乙醇中反应,生成的橙色溶液中也含有−离子:

相应的阳离子+也是已知的。

−:

以叠氮化四甲基铵处理四氮化四硫,可生成杂环的−离子。该离子含有10个π电子:

以PPN+N3−作原料发生类似反应,产物为蓝色的全硫代亚硝酸盐:

NS3−阴离子为链状结构,S=N-S-S−。

S4N3+:

该离子为平面七元环结构,非常稳定,可由干燥的氯化氢气作用于四氮化四硫制得:

S4N42+:

FSO3H与S4N4反应,或S4N4.AlCl3与化学计量的AlCl3混合并通入Cl2,都可制得S4N42+离子。前者产物为2+2−,后者为2+2−。

S4N4可与缺电子的炔烃反应。

将气态的S4N4通过金属银表面,会生成低温超导体聚氮化硫,简写为"(SN)x",转变温度为(0.26±0.03)K。 该反应机理中,首先生成硫化银Ag2S,然后该物质催化S4N4转变为四元环S2N2,接着后者很快聚合。

S4N4可与苯和C60共结晶。

S4N4在研磨、摩擦、撞击、震动和迅速加热时,都会发生爆炸,使用时必须小心。含有杂质硫的样品不如纯化后的四氮化四硫敏感。

相关

  • 模糊集模糊集是模糊数学上的一个基本概念,是数学上普通集合的扩展。给定一个论域 U {\displaystyle U} ,那么从
  • 细胞骨架细胞骨架(英语:Cytoskeleton)一般是指细胞内细胞质中的由蛋白质构成的纤维的网络结构。它是一个动态结构,其中有一部分是不断的被破坏,更新或新建的。在生命的所有生物领域(古菌,细
  • 凯撒 (头衔)凯撒源自于拉丁语:Cæsar,是罗马帝国皇帝的头衔之一。从罗马共和政体转型为帝国的过程中,在身为独裁官的盖乌斯·尤利乌斯·凯撒(前102年-前44年)死亡之后,几位古罗马掌握实权的领
  • 莱夫·埃里克松莱夫·埃里克松(古冰岛语:Leifr Eiríksson;挪威语:Leiv Eiriksson,约970年-约1020年)著名的北欧维京(诺尔斯人)探险家。他比哥伦布早500年抵达美洲,被认为是第一个发现北美洲的欧洲
  • 月球正面月球正面是月球永远朝向地球的半球,而相对的另外半球被称为月球背面。因为月球绕地球公转的周期和它绕着自己的轴心自转的周期相同,因此在地球上只能看见月球的一面,这种情形称
  • 皮戈特半岛皮戈特半岛是南极洲的半岛,位于帕尔默地东岸,西面以布莱恩冰川和斯万冰川为界,该半岛以1940年12月30日由美国探险队发现,美国地质调查局根据测量和美国海军空中照片把该半岛绘入
  • 贾斯特斯·达辛登贾斯特斯·达辛登(德语:Justus Dahinden,1925年5月18日-2020年4月11日),出生于苏黎世,瑞士建筑师、教师和作家。
  • 吉登伯勒姆吉登伯勒姆(泰米尔语:சிதம்பரம்),或译吉丹巴拉姆,是印度泰米尔纳德邦古达罗尔县的一座城市。2001年人口58,968,2011年人口62,153。
  • 凯瑟琳·茱斯顿凯瑟琳·茱斯顿(英语:Kathryn Joosten,1939年12月20日-2012年6月2日),艾美奖得主、美国广受欢迎的电视剧《绝望主妇》演员。分别在2005年和2008年两度获得艾美奖喜剧类最佳客串女
  • 钱易 (环境工程专家)钱易(1936年12月27日-),女,江苏无锡人,出生于苏州,中国环境工程专家,清华大学环境学院教授。国学大师钱穆之女。1956年毕业于上海同济大学,1959年取得清华大学研究生学位。致力于研究