四氮化四硫

✍ dations ◷ 2025-06-29 22:12:25 #爆炸物,氮-硫化合物,氮化物

四氮化四硫(分子式:S4N4)是最重要的硫-氮二元化合物,室温下为橙黄色的固体。它的结构和成键较特殊,也是制备其他含S-N键化合物时最主要的原料,因此成为化学家研究的焦点之一。

氮和硫电负性相近,容易形成共价键相连的S-N环系,其中不少是S4N4的衍生物。同族的Se和Te也很容易生成一系列相似的含X-N键(X = 氧族元素)的化合物。

S4N4为双楔形笼状结构,具有D2d对称。硫和氮交替构成一个假想的八元环,每一对硫原子中S-S相距2.586Å(由X单晶衍射测定)。 同价的Se4N4结构类似。

四氮化四硫分子中,S-N键长几乎相等,存在电子离域。S-S“跨环”相互作用的距离要比范德华力的距离小得多,这个现象可以用分子轨道理论来解释, 但其实际原因仍然有争议。 1970年时Gleiter提出了一个目前接受得比较广的理论:从分子对称性上看,S4N4若为4h的平面型结构,那么它将成为一个12π的平面体系,基态为三线态,会受到姜-泰勒效应的影响而发生构型扭曲。将其构型畸变为非平面的2d型结构后,2u LUMO和g HOMO的顺序交换,基态时变为单线态,能量降低,而且分子中也可以产生硫-硫跨环作用加以稳定,因此是有利的一个构型。

S4N4生成热为正值(460kJ/mol),属于所谓“吸热化合物”,在热力学上不稳定。虽然它在常温下还算稳定,但研磨、摩擦、撞击、震动和迅速加热时,四氮化四硫都会猛烈分解并引起爆炸,生成非常稳定的产物:

越纯的四氮化四硫爆炸性越强。热力学不稳定而动力学稳定的分子中,大多数结构较为复杂,结构简单的不多,而四氮化四硫即是一例。

四氮化四硫为热色性固体,低于-30°C时为淡黄色,室温下为橙黄色,高于100°C时为深红色。

四氮化四硫的传统制备方法,是用干燥的氨作用于S2Cl2的四氯化碳溶液,并用二�烷萃取:

也可用NH4Cl代替反应物中的氨:

较新的方法利用2S来引入S-N键。这个化合物可由双(三甲基硅基)氨基锂与SCl2反应制得:

然后用制得的2S与SCl2和SO2Cl2的混合物反应,制取S4N4

四氮化四硫与其他化合物发生的一系列反应主要可分为两类,一类是S4N4环系保持的反应,一类是环系被破坏的反应。大多数研究着重于与有机金属化合物的反应。

S4N4会与Vaska配合物()发生氧化加成反应,生成含六配位铱的配合物,其中S4N4中的两个硫原子和一个氮原子作配位原子。蔡斯盐也可与四氮化四硫发生类似反应,生成铂(IV)的配合物。

S4N4与2−阴离子反应,S4N4环系打开,生成三个钯配合物。

与碘化氢或氯化氢的反应也属于这一类:

S4N4是路易斯碱,氮原子上的孤对电子可与路易斯酸紧密配合,如BF3、SbCl5和SO3。这些加合物中,四氮化四硫的环形结构发生扭曲,电子离域的程度也可能减弱。

与S4N4反应的产物中,硫原子与金属配位,并且会异构为氮原子也发生配位的另一个配合物。

四氮化四硫可被HBF4质子化:

“软酸”CuCl可与四氮化四硫生成共聚合物,其中S4N4环作桥联配体:

S4N4可在碱性条件下水解,稀NaOH中S4N4的反应如下:

碱性增大时,产物变为亚硫酸根:

四氮化四硫可用作制取其他重要S-N化合物的原料。

−:

四氮化四硫与哌啶反应产生−阴离子:

在搅拌下,使叠氮化钠与四氮化四硫在乙醇中反应,生成的橙色溶液中也含有−离子:

相应的阳离子+也是已知的。

−:

以叠氮化四甲基铵处理四氮化四硫,可生成杂环的−离子。该离子含有10个π电子:

以PPN+N3−作原料发生类似反应,产物为蓝色的全硫代亚硝酸盐:

NS3−阴离子为链状结构,S=N-S-S−。

S4N3+:

该离子为平面七元环结构,非常稳定,可由干燥的氯化氢气作用于四氮化四硫制得:

S4N42+:

FSO3H与S4N4反应,或S4N4.AlCl3与化学计量的AlCl3混合并通入Cl2,都可制得S4N42+离子。前者产物为2+2−,后者为2+2−。

S4N4可与缺电子的炔烃反应。

将气态的S4N4通过金属银表面,会生成低温超导体聚氮化硫,简写为"(SN)x",转变温度为(0.26±0.03)K。 该反应机理中,首先生成硫化银Ag2S,然后该物质催化S4N4转变为四元环S2N2,接着后者很快聚合。

S4N4可与苯和C60共结晶。

S4N4在研磨、摩擦、撞击、震动和迅速加热时,都会发生爆炸,使用时必须小心。含有杂质硫的样品不如纯化后的四氮化四硫敏感。

相关

  • 坦佩市坦佩(英语:Tempe,音.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Gentium Alt
  • 美国移民和归化局美国移民暨归化局(英语:Immigration and Naturalization Service)是美国昔日掌管移民暨归化的政府部门,隶属于美国司法部。其职能在2003年1月1日已经为美国国土安全部接收,其绝大
  • 汉都亚汉都亚(马来语:Hang Tuah;爪夷文:هڠتواه; 又译韩都亚、杭图亚)是15世纪时马六甲王朝的著名的海军统帅,也是一位传说中的马来武士。他是海军统帅中最能干的,对国王无比忠诚,也
  • 细胞毒性T细胞细胞毒性T细胞(英语:cytotoxic T cell,TC或CTL),也称杀手T细胞(killer T cell),TC细胞、胞杀T细胞、胞毒T细胞,或CD8+ T细胞,属于T细胞的一种,可以杀死癌细胞、受病毒感染的细胞,以及其
  • 文本挖掘文本挖掘有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生,如模式识别。文本挖掘通常
  • 死魂灵《死魂灵》(有版本译作《死农奴》,俄语:Мёртвые души),是俄罗斯讽刺作家、喜剧家果戈理的主要代表作品。该书的第一卷出版于1842年,创作时间达七年之久;第二卷是在1852
  • 大卫·施拉姆 (天文学家)大卫·诺曼·施拉姆(英语:David Norman Schramm,1945年10月25日-1997年12月19日),美国天文学家和教育家,世界知名的大爆炸理论专家。施拉姆生于密苏里州圣路易斯。1967年在麻省理工
  • 威廉·狄尔泰威廉·狄尔泰(Wilhelm Dilthey,1833年11月19日-1911年10月1日),德国哲学家,历史学家,心理学家,社会学家。他于海德堡大学学习神学,后转赴柏林大学并取得博士学位,后任教于柏林大学(186
  • 红丹红丹又名铅丹,为中药名,主要成分为四氧化三铅。用于解毒,生肌,坠痰镇惊。多外用,研末撒、调敷或熬膏。内服入丸、散。 《神农本草经》:“铅丹,味辛微寒。主治咳逆胃反,惊痫癫疾,除热
  • Red Velvet音乐作品列表Red Velvet音乐作品列表主要列举韩国女子团体Red Velvet历年发行的各类音乐专辑、影视歌曲和广告歌曲。《The Red》《Perfect Velvet》《The Perfect Red Velvet》《The ReV