爱因斯坦求和约定

✍ dations ◷ 2024-09-20 16:32:50 #数学表示法,多重线性代数,张量,黎曼几何,数学物理,阿尔伯特·爱因斯坦

在数学里,特别是将线性代数套用到物理时,爱因斯坦求和约定(Einstein summation convention)是一种标记的约定,又称为爱因斯坦标记法(Einstein notation),在处理关于坐标的方程式时非常有用。这约定是由阿尔伯特·爱因斯坦于1916年提出的。后来,爱因斯坦与友人半开玩笑地说:“这是数学史上的一大发现,若不信的话,可以试着返回那不使用这方法的古板日子。”

按照爱因斯坦求和约定,当一个单独项目内有标号变数出现两次,一次是上标,一次是下标时,则必须总和所有这单独项目的可能值。通常而言,标号的标值为1、2、3(代表维度为三的欧几里得空间),或0、1、2、3(代表维度为四的时空或闵可夫斯基时空)。但是,标值可以有任意值域,甚至(在某些应用案例里)无限集合。这样,在三维空间里,

的意思是

请特别注意,上标并不是指数,而是标记不同坐标。例如,在直角坐标系里, x 1 {\displaystyle x^{1}\,\!} x 2 {\displaystyle x^{2}\,\!} x 3 {\displaystyle x^{3}\,\!} 分别表示 x {\displaystyle x\,\!} 坐标、 y {\displaystyle y\,\!} 坐标、 z {\displaystyle z\,\!} 坐标,而不是 x {\displaystyle x\,\!} x {\displaystyle x\,\!} 的平方、 x {\displaystyle x\,\!} 的立方。

爱因斯坦标记法的基本点子是余向量与向量可以形成标量:

通常会将这写为求和公式形式:

在基底变换之下,标量保持不变。当基底改变时,一个向量的线性变换可以用矩阵来描述,而余向量的线性变换则需用其逆矩阵来描述。这样的设计为的是要保证,不论基底为何,伴随余向量的线性函数(即上述总和)保持不变。由于只有总和不变,而总和所涉及的每一个项目都有可能会改变,所以,爱因斯坦提出了这标记法,重复标号表示总和,不需要用到求和符号:

采用爱因斯坦标记法,余向量都是以下标来标记,而向量都是以上标来标记。标号的位置具有特别意义。请不要将上标与指数混淆在一起,大多数涉及的方程式都是线性,不超过变数的一次方。在方程式里,单独项目内的标号变数最多只会出现两次,假若多于两次,或出现任何其它例外,则都必须特别加以说明,才不会造成含意混淆不清。

在线性代数里,采用爱因斯坦标记法,可以很容易的分辨向量和余向量(又称为1-形式)。向量的分量是用上标来标明,例如, a i {\displaystyle a^{i}\,\!} 。给予一个 n {\displaystyle n\,\!} 维向量空间 V {\displaystyle \mathbb {V} \,\!} 和其任意基底 e = ( e 1 , e 2 , , e n ) {\displaystyle \mathbf {e} =(\mathbf {e} _{1},\mathbf {e} _{2},\dots ,\mathbf {e} _{n})\,\!} (可能不是标准正交基),那么,向量 a {\displaystyle \mathbf {a} \,\!} 表示为

余向量的分量是用下标来标明,例如, α i {\displaystyle \alpha _{i}\,\!} 。给予 V {\displaystyle \mathbb {V} \,\!} 的对偶空间 V {\displaystyle \mathbb {V} ^{*}\,\!} 和其任意基底 ω = ( ω 1 , ω 2 , , ω n ) {\displaystyle {\boldsymbol {\omega }}=({\boldsymbol {\omega }}^{1},{\boldsymbol {\omega }}^{2},\dots ,{\boldsymbol {\omega }}^{n})\,\!} (可能不是标准正交基),那么,余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} 表示为

采用向量的共变和反变术语,上标表示反变向量(向量)。对于基底的改变,从 e {\displaystyle \mathbf {e} \,\!} 改变为 e ¯ {\displaystyle {\overline {\mathbf {e} }}\,\!} ,反变向量会变换为

其中, a ¯ i {\displaystyle {\overline {a}}^{i}\,\!} 是改变基底后的向量的分量, x ¯ i {\displaystyle {\overline {x}}^{i}\,\!} 是改变基底后的坐标, x j {\displaystyle x^{j}\,\!} 是原先的坐标,

下标表示共变向量(余向量)。对于基底的改变,从 ω {\displaystyle {\boldsymbol {\omega }}\,\!} 改变为 ω ¯ {\displaystyle {\overline {\boldsymbol {\omega }}}\,\!} ,共变向量会会变换为

矩阵 A {\displaystyle A\,\!} 的第 m {\displaystyle m\,\!} 横排,第 n {\displaystyle n\,\!} 竖排的元素,以前标记为 A m n {\displaystyle A_{mn}\,\!} ;现在改标记为 A n m {\displaystyle A_{n}^{m}\,\!} 。各种一般运算都可以用爱因斯坦标记法来表示如下:

给予向量 a {\displaystyle \mathbf {a} \,\!} 和余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} ,其向量和余向量的内积为标量:

给予矩阵 A {\displaystyle A\,\!} 和向量 a {\displaystyle \mathbf {a} \,\!} ,它们的乘积是向量 b {\displaystyle \mathbf {b} \,\!}

类似地,矩阵 A {\displaystyle A\,\!} 的转置矩阵 B = A T {\displaystyle B=A^{\mathrm {T} }\,\!} ,其与余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} 的乘积是余向量 β {\displaystyle {\boldsymbol {\beta }}\,\!}

矩阵乘法表示为

这公式等价于较冗长的普通标记法:

给予一个方块矩阵 A j i {\displaystyle A_{j}^{i}\,\!} ,总和所有上标与下标相同的元素 A i i {\displaystyle A_{i}^{i}\,\!} ,可以得到这矩阵的迹 t {\displaystyle t\,\!}

M维向量 a {\displaystyle \mathbf {a} \,\!} 和N维余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} 的外积是一个M×N矩阵 A {\displaystyle A\,\!}

采用爱因斯坦标记式,上述方程式可以表示为

由于 i {\displaystyle i\,\!} j {\displaystyle j\,\!} 代表两个不同的标号,在这案例,值域分别为M和N,外积不会除去这两个标号,而使这两个标号变成了新矩阵 A {\displaystyle A\,\!} 的标号。

一般力学及工程学会用互相标准正交基的基底向量 i ^ {\displaystyle {\hat {\mathbf {i} }}\,\!} j ^ {\displaystyle {\hat {\mathbf {j} }}\,\!} k ^ {\displaystyle {\hat {\mathbf {k} }}\,\!} 来描述三维空间的向量。

把直角坐标系的基底向量 i ^ {\displaystyle {\hat {\mathbf {i} }}\,\!} j ^ {\displaystyle {\hat {\mathbf {j} }}\,\!} k ^ {\displaystyle {\hat {\mathbf {k} }}\,\!} 写成 e ^ 1 {\displaystyle {\hat {\mathbf {e} }}_{1}\,\!} e ^ 2 {\displaystyle {\hat {\mathbf {e} }}_{2}\,\!} e ^ 3 {\displaystyle {\hat {\mathbf {e} }}_{3}\,\!} ,所以一个向量可以写成:

根据爱因斯坦求和约定,若单项中有标号出现两次且分别位于上标及下标,则此项代表着所有可能值之总和:

由于基底是标准正交基, u {\displaystyle \mathbf {u} \,\!} 的每一个分量 u i = u i {\displaystyle u^{i}=u_{i}\,\!} ,所以,

两个向量 u {\displaystyle \mathbf {u} \,\!} v {\displaystyle \mathbf {v} \,\!} 的内积是

由于基底是标准正交基,基底向量相互正交归一:

其中,   δ i j {\displaystyle \ \delta _{ij}\,\!} 就是克罗内克函数。当 i = j {\displaystyle i=j\,\!} 时,则 δ i j = 1 {\displaystyle \delta _{ij}=1\,\!} ,否则 δ i j = 0 {\displaystyle \delta _{ij}=0\,\!}

逻辑上,在方程式内的任意项目,若遇到了克罗内克函数   δ i j {\displaystyle \ \delta _{ij}\,\!} ,就可以把方程式中的标号 i {\displaystyle i\,\!} 转为 j {\displaystyle j\,\!} 或者把标号 j {\displaystyle j\,\!}

相关

  • 先天性疾病先天性障碍,又称先天性疾病、先天畸形、先天缺陷,是指发育中的胎儿因为遗传性疾病或发育环境等因素导致某个部位特征结构畸形,导致在婴儿出生时即有的病症,包括了身体(英语:Physic
  • 神经发育障碍神经发育障碍或神经发展障碍(Neurodevelopmental disorder)是精神疾患中的一种。此用词有几种不同的定义,其中一种范围较窄的定义是指有关脑部,会影响情绪、一般学习能力、自我
  • E-6冲印处理E-6冲印处理(E-6 Process,简称E-6)是用作冲印柯达Ektachrome、富士Fujichrome及其他彩色正片(反转片、幻灯片)的一种冲印程序。与一些其他彩色正片冲印程序(如柯达Kodachrome的K-1
  • 福德爷长庆庙坐标:25°01′30″N 121°31′19″E / 25.025014°N 121.521852°E / 25.025014; 121.521852福德爷长庆庙,简称长庆庙,是位于台湾台北市中正区板溪里的土地祠,历史可追溯至清治
  • 科罗拉多沙漠科罗拉多沙漠(Colorado Desert)是索诺兰沙漠的一部分,从美国加利福尼亚州东南部圣戈尔戈尼奥山口(San Gorgonio Pass)向东南延伸到墨西哥北部的科罗拉多河三角洲,全长264公里。面
  • 概念模型概念模型(英文:Conceptual Models)在电脑人机互动领域中,概念模型指的是关于某种系统一系列在构想、概念上的描述,叙述其如何作用,能让使用者了解此系统被设计师预设之使用方式。
  • 莫尔黑德天文和科学中心莫尔黑德天文和科学中心(英语:Morehead Planetarium and Science Center)坐落在北卡罗来纳大学教堂山的校园里。1949年首次开放的时候,它的目的是为了训练双子星座计划和阿波罗
  • 诺伯特·真贝尔 诺伯特·真贝尔(Norbert Gyömbér,1992年7月3日-)是斯洛伐克的职业足球运动员,司职中后卫 / 防守中场,现时被意甲罗马外借至意乙球队佩鲁贾。2015年8月18日,真贝尔与罗马签订
  • 赵文喜赵文喜(1911年-1936年),满族,伊尔根觉罗氏,生于大清奉天省兴京县平顶山乡(今辽宁省抚顺市新宾满族自治县平顶山镇),早年落草深山,绰号大喜字。九一八事变后,先后加入辽宁民众自卫军和东
  • 台中市第九期市地重划区台中市第九期市地重划区(简称九期重划区、官方称九期旱溪市地重划)位于台湾台中市东区,为台中市政府规划的市地重划区之一。该地段为旱溪、大里溪流域,早期时有水患,且多为小型工