爱因斯坦求和约定

✍ dations ◷ 2025-07-27 12:28:14 #数学表示法,多重线性代数,张量,黎曼几何,数学物理,阿尔伯特·爱因斯坦

在数学里,特别是将线性代数套用到物理时,爱因斯坦求和约定(Einstein summation convention)是一种标记的约定,又称为爱因斯坦标记法(Einstein notation),在处理关于坐标的方程式时非常有用。这约定是由阿尔伯特·爱因斯坦于1916年提出的。后来,爱因斯坦与友人半开玩笑地说:“这是数学史上的一大发现,若不信的话,可以试着返回那不使用这方法的古板日子。”

按照爱因斯坦求和约定,当一个单独项目内有标号变数出现两次,一次是上标,一次是下标时,则必须总和所有这单独项目的可能值。通常而言,标号的标值为1、2、3(代表维度为三的欧几里得空间),或0、1、2、3(代表维度为四的时空或闵可夫斯基时空)。但是,标值可以有任意值域,甚至(在某些应用案例里)无限集合。这样,在三维空间里,

的意思是

请特别注意,上标并不是指数,而是标记不同坐标。例如,在直角坐标系里, x 1 {\displaystyle x^{1}\,\!} x 2 {\displaystyle x^{2}\,\!} x 3 {\displaystyle x^{3}\,\!} 分别表示 x {\displaystyle x\,\!} 坐标、 y {\displaystyle y\,\!} 坐标、 z {\displaystyle z\,\!} 坐标,而不是 x {\displaystyle x\,\!} x {\displaystyle x\,\!} 的平方、 x {\displaystyle x\,\!} 的立方。

爱因斯坦标记法的基本点子是余向量与向量可以形成标量:

通常会将这写为求和公式形式:

在基底变换之下,标量保持不变。当基底改变时,一个向量的线性变换可以用矩阵来描述,而余向量的线性变换则需用其逆矩阵来描述。这样的设计为的是要保证,不论基底为何,伴随余向量的线性函数(即上述总和)保持不变。由于只有总和不变,而总和所涉及的每一个项目都有可能会改变,所以,爱因斯坦提出了这标记法,重复标号表示总和,不需要用到求和符号:

采用爱因斯坦标记法,余向量都是以下标来标记,而向量都是以上标来标记。标号的位置具有特别意义。请不要将上标与指数混淆在一起,大多数涉及的方程式都是线性,不超过变数的一次方。在方程式里,单独项目内的标号变数最多只会出现两次,假若多于两次,或出现任何其它例外,则都必须特别加以说明,才不会造成含意混淆不清。

在线性代数里,采用爱因斯坦标记法,可以很容易的分辨向量和余向量(又称为1-形式)。向量的分量是用上标来标明,例如, a i {\displaystyle a^{i}\,\!} 。给予一个 n {\displaystyle n\,\!} 维向量空间 V {\displaystyle \mathbb {V} \,\!} 和其任意基底 e = ( e 1 , e 2 , , e n ) {\displaystyle \mathbf {e} =(\mathbf {e} _{1},\mathbf {e} _{2},\dots ,\mathbf {e} _{n})\,\!} (可能不是标准正交基),那么,向量 a {\displaystyle \mathbf {a} \,\!} 表示为

余向量的分量是用下标来标明,例如, α i {\displaystyle \alpha _{i}\,\!} 。给予 V {\displaystyle \mathbb {V} \,\!} 的对偶空间 V {\displaystyle \mathbb {V} ^{*}\,\!} 和其任意基底 ω = ( ω 1 , ω 2 , , ω n ) {\displaystyle {\boldsymbol {\omega }}=({\boldsymbol {\omega }}^{1},{\boldsymbol {\omega }}^{2},\dots ,{\boldsymbol {\omega }}^{n})\,\!} (可能不是标准正交基),那么,余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} 表示为

采用向量的共变和反变术语,上标表示反变向量(向量)。对于基底的改变,从 e {\displaystyle \mathbf {e} \,\!} 改变为 e ¯ {\displaystyle {\overline {\mathbf {e} }}\,\!} ,反变向量会变换为

其中, a ¯ i {\displaystyle {\overline {a}}^{i}\,\!} 是改变基底后的向量的分量, x ¯ i {\displaystyle {\overline {x}}^{i}\,\!} 是改变基底后的坐标, x j {\displaystyle x^{j}\,\!} 是原先的坐标,

下标表示共变向量(余向量)。对于基底的改变,从 ω {\displaystyle {\boldsymbol {\omega }}\,\!} 改变为 ω ¯ {\displaystyle {\overline {\boldsymbol {\omega }}}\,\!} ,共变向量会会变换为

矩阵 A {\displaystyle A\,\!} 的第 m {\displaystyle m\,\!} 横排,第 n {\displaystyle n\,\!} 竖排的元素,以前标记为 A m n {\displaystyle A_{mn}\,\!} ;现在改标记为 A n m {\displaystyle A_{n}^{m}\,\!} 。各种一般运算都可以用爱因斯坦标记法来表示如下:

给予向量 a {\displaystyle \mathbf {a} \,\!} 和余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} ,其向量和余向量的内积为标量:

给予矩阵 A {\displaystyle A\,\!} 和向量 a {\displaystyle \mathbf {a} \,\!} ,它们的乘积是向量 b {\displaystyle \mathbf {b} \,\!}

类似地,矩阵 A {\displaystyle A\,\!} 的转置矩阵 B = A T {\displaystyle B=A^{\mathrm {T} }\,\!} ,其与余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} 的乘积是余向量 β {\displaystyle {\boldsymbol {\beta }}\,\!}

矩阵乘法表示为

这公式等价于较冗长的普通标记法:

给予一个方块矩阵 A j i {\displaystyle A_{j}^{i}\,\!} ,总和所有上标与下标相同的元素 A i i {\displaystyle A_{i}^{i}\,\!} ,可以得到这矩阵的迹 t {\displaystyle t\,\!}

M维向量 a {\displaystyle \mathbf {a} \,\!} 和N维余向量 α {\displaystyle {\boldsymbol {\alpha }}\,\!} 的外积是一个M×N矩阵 A {\displaystyle A\,\!}

采用爱因斯坦标记式,上述方程式可以表示为

由于 i {\displaystyle i\,\!} j {\displaystyle j\,\!} 代表两个不同的标号,在这案例,值域分别为M和N,外积不会除去这两个标号,而使这两个标号变成了新矩阵 A {\displaystyle A\,\!} 的标号。

一般力学及工程学会用互相标准正交基的基底向量 i ^ {\displaystyle {\hat {\mathbf {i} }}\,\!} j ^ {\displaystyle {\hat {\mathbf {j} }}\,\!} k ^ {\displaystyle {\hat {\mathbf {k} }}\,\!} 来描述三维空间的向量。

把直角坐标系的基底向量 i ^ {\displaystyle {\hat {\mathbf {i} }}\,\!} j ^ {\displaystyle {\hat {\mathbf {j} }}\,\!} k ^ {\displaystyle {\hat {\mathbf {k} }}\,\!} 写成 e ^ 1 {\displaystyle {\hat {\mathbf {e} }}_{1}\,\!} e ^ 2 {\displaystyle {\hat {\mathbf {e} }}_{2}\,\!} e ^ 3 {\displaystyle {\hat {\mathbf {e} }}_{3}\,\!} ,所以一个向量可以写成:

根据爱因斯坦求和约定,若单项中有标号出现两次且分别位于上标及下标,则此项代表着所有可能值之总和:

由于基底是标准正交基, u {\displaystyle \mathbf {u} \,\!} 的每一个分量 u i = u i {\displaystyle u^{i}=u_{i}\,\!} ,所以,

两个向量 u {\displaystyle \mathbf {u} \,\!} v {\displaystyle \mathbf {v} \,\!} 的内积是

由于基底是标准正交基,基底向量相互正交归一:

其中,   δ i j {\displaystyle \ \delta _{ij}\,\!} 就是克罗内克函数。当 i = j {\displaystyle i=j\,\!} 时,则 δ i j = 1 {\displaystyle \delta _{ij}=1\,\!} ,否则 δ i j = 0 {\displaystyle \delta _{ij}=0\,\!}

逻辑上,在方程式内的任意项目,若遇到了克罗内克函数   δ i j {\displaystyle \ \delta _{ij}\,\!} ,就可以把方程式中的标号 i {\displaystyle i\,\!} 转为 j {\displaystyle j\,\!} 或者把标号 j {\displaystyle j\,\!}

相关

  • 元数学元数学(英语:Metamathematics),又译为超数学,使用数学技术来研究数学本身的一门学科。一般来说,元数学是一种将数学作为人类意识和文化客体的科学思维或知识。更进一步来说,元数学
  • 牛部,为汉字索引中的部首之一,康熙字典214个部首中的第九十三个(四划的则为第三十三个)。就繁体和简体中文中,牛部归于四划部首。牛部通常是从下、左方均可为部字。当下为部字时,
  • BaO氧化钡(化学式:BaO)是钡的正常氧化物,为白色固体。它可由钡在氧气中燃烧,或钡盐热分解制得:与水反应生成氢氧化钡:氧化钡可用作热阴极及阴极射线管中的涂层以及生产特定种类的玻璃,
  • 帕尔马公国帕尔马公国建立于1545年,由原米兰公国于波河以南,以帕尔马为中心的一带领土所组成,以作为教宗保禄三世的私生子皮埃·路易吉·法尔内塞的封地。1556年第二任公爵奥塔维奥·法尔
  • 前总统乌克兰总统(乌克兰语:Президент України,Prezydent Ukrayiny),是欧洲国家乌克兰的国家元首,对内是最高领导人行使政治权力和责任。对外代表乌克兰。人民公仆   
  • 国会宫阿根廷国会宫(Palacio del Congreso de la Nación Argentina)是阿根廷国会所在地,位于布宜诺斯艾利斯恩特雷里奥斯大道(Avenida Entre Ríos)50号,面临面积10000平方米的国会广场
  • 磷酸果糖激酶2结构 / ECOD磷酸果糖激酶2(英语:Phosphofructokinase-2;PFK2;EC 2.7.1.105)是一种生物体内双重功能酶,在某些细胞作用,扮演调节血液葡萄糖浓度的角色。磷酸果糖激酶-2与果糖二磷酸
  • 翁贝托·埃科翁贝托·埃科(意大利语:Umberto Eco,意大利语:,1932年1月5日-2016年2月19日)是一名意大利小说家、文学评论者、哲学家、符号学家和大学教授。除了严肃的学术著作外,著有大量的小说和
  • 英雄日常英雄日常(1994年4月9日-)本名林英雄,是YouTube上的一名网络创作者,主要拍摄一些玩具开箱、日常、探险等影片类型。并且有一首歌地表最强孩子王1.存6年的存钱筒..打开才461元 弟
  • 李玶李玶(1924年3月20日-2019年9月10日),湖北大悟人,中国地震构造专家。1947年7月毕业于国立中央大学。1999年当选为中国工程院院士。