在数学里,特别是将线性代数套用到物理时,爱因斯坦求和约定(Einstein summation convention)是一种标记的约定,又称为爱因斯坦标记法(Einstein notation),在处理关于坐标的方程式时非常有用。这约定是由阿尔伯特·爱因斯坦于1916年提出的。后来,爱因斯坦与友人半开玩笑地说:“这是数学史上的一大发现,若不信的话,可以试着返回那不使用这方法的古板日子。”
按照爱因斯坦求和约定,当一个单独项目内有标号变数出现两次,一次是上标,一次是下标时,则必须总和所有这单独项目的可能值。通常而言,标号的标值为1、2、3(代表维度为三的欧几里得空间),或0、1、2、3(代表维度为四的时空或闵可夫斯基时空)。但是,标值可以有任意值域,甚至(在某些应用案例里)无限集合。这样,在三维空间里,
的意思是
请特别注意,上标并不是指数,而是标记不同坐标。例如,在直角坐标系里,
、
、
分别表示
坐标、
坐标、
坐标,而不是
、
的平方、
的立方。
爱因斯坦标记法的基本点子是余向量与向量可以形成标量:
通常会将这写为求和公式形式:
在基底变换之下,标量保持不变。当基底改变时,一个向量的线性变换可以用矩阵来描述,而余向量的线性变换则需用其逆矩阵来描述。这样的设计为的是要保证,不论基底为何,伴随余向量的线性函数(即上述总和)保持不变。由于只有总和不变,而总和所涉及的每一个项目都有可能会改变,所以,爱因斯坦提出了这标记法,重复标号表示总和,不需要用到求和符号:
采用爱因斯坦标记法,余向量都是以下标来标记,而向量都是以上标来标记。标号的位置具有特别意义。请不要将上标与指数混淆在一起,大多数涉及的方程式都是线性,不超过变数的一次方。在方程式里,单独项目内的标号变数最多只会出现两次,假若多于两次,或出现任何其它例外,则都必须特别加以说明,才不会造成含意混淆不清。
在线性代数里,采用爱因斯坦标记法,可以很容易的分辨向量和余向量(又称为1-形式)。向量的分量是用上标来标明,例如,
。给予一个
维向量空间
和其任意基底
(可能不是标准正交基),那么,向量
表示为
余向量的分量是用下标来标明,例如,
。给予
的对偶空间
和其任意基底
(可能不是标准正交基),那么,余向量
表示为
采用向量的共变和反变术语,上标表示反变向量(向量)。对于基底的改变,从
改变为
,反变向量会变换为
其中,
是改变基底后的向量的分量,
是改变基底后的坐标,
是原先的坐标,
下标表示共变向量(余向量)。对于基底的改变,从
改变为
,共变向量会会变换为
矩阵
的第
横排,第
竖排的元素,以前标记为
;现在改标记为
。各种一般运算都可以用爱因斯坦标记法来表示如下:
给予向量
和余向量
,其向量和余向量的内积为标量:
给予矩阵
和向量
,它们的乘积是向量
:
类似地,矩阵
的转置矩阵
,其与余向量
的乘积是余向量
:
矩阵乘法表示为
这公式等价于较冗长的普通标记法:
给予一个方块矩阵
,总和所有上标与下标相同的元素
,可以得到这矩阵的迹
:
M维向量
和N维余向量
的外积是一个M×N矩阵
:
采用爱因斯坦标记式,上述方程式可以表示为
由于
和
代表两个不同的标号,在这案例,值域分别为M和N,外积不会除去这两个标号,而使这两个标号变成了新矩阵
的标号。
一般力学及工程学会用互相标准正交基的基底向量
、
及
来描述三维空间的向量。
把直角坐标系的基底向量
、
及
写成
、
及
,所以一个向量可以写成:
根据爱因斯坦求和约定,若单项中有标号出现两次且分别位于上标及下标,则此项代表着所有可能值之总和:
由于基底是标准正交基,
的每一个分量
,所以,
两个向量
与
的内积是
由于基底是标准正交基,基底向量相互正交归一:
其中,
就是克罗内克函数。当
时,则
,否则
。
逻辑上,在方程式内的任意项目,若遇到了克罗内克函数
,就可以把方程式中的标号
转为
或者把标号
相关
- 创始者效应创立者效应(英语:founder effect,亦称为建立者效应或创始者效应、始祖效应)是加速族群遗传漂变作用的一种形式,指由带有亲代群体中部分等位基因的少数个体重新建立新的群体,这个群
- 吴新涛吴新涛(1939年4月6日-),福建石狮人,中国物理化学家。生于福建石狮。1960年毕业于厦门大学化学系。1966年福州大学物理化学专业研究生毕业。中国科学院福建物质结构研究所研究员、
- 自由贸易区自由贸易区或自贸区可以指:
- 太阳周期太阳周期,或是太阳磁场活动周期是太阳的各种现象,包括太空天气后面的动态引擎和能量来源。通过氢磁流体发电机的程序供给的能量,诱导太阳内部的流动,形成太阳周期。太阳周期是在
- 查尔斯·柯蒂斯查尔斯·柯蒂斯(Charles Curtis,1860年1月25日-1936年2月8日),美国政治家,曾任美国副总统。
- 罗伯特·巴克罗伯特·托马斯·巴克(Robert Thomas Bakker,1945年3月24日-)是一位美国古生物学家,帮助重塑恐龙的现代理论,特别是为部分恐龙是温血动物的理论提出佐证。罗伯特·巴克与他的导师
- 菲利普·卡黑菲利普·卡黑(法语:Philippe Garrel;1948年4月6日-)是法国电影工作者,他执导的电影作品多次获选入威尼斯影展与戛纳影展。菲利普·卡黑的父亲莫里斯·卡黑(法语:Maurice Garrel)是位
- 西田敏行西田 敏行(1947年11月4日-),日本的演员、歌手、艺人、主持人,福岛县郡山市出身。经纪公司隶属于Office Koback(日语:オフィスコバック)。明治大学付属中野高等学校(日语:明治大学付属
- 曼努埃尔二世 (葡萄牙)曼努埃尔二世(全名曼努埃尔·玛丽亚·菲利佩·卡洛斯·阿美利奥·路易斯·米格尔·拉菲尔·加布里埃尔·贡扎加·法兰西斯科·德·阿西西·欧仁尼奥,葡萄牙语:Manuel Maria Fil
- 棒束孢属 为肉座菌目麦角菌科之下的一个属,也有部分研究将其分类在虫草菌科(Cordycipitaceae(英语:Cordycipitaceae))。 属是一个种类繁多的虫生真菌,其中部分种类作为生物杀虫剂使用,如