在数学里,特别是将线性代数套用到物理时,爱因斯坦求和约定(Einstein summation convention)是一种标记的约定,又称为爱因斯坦标记法(Einstein notation),在处理关于坐标的方程式时非常有用。这约定是由阿尔伯特·爱因斯坦于1916年提出的。后来,爱因斯坦与友人半开玩笑地说:“这是数学史上的一大发现,若不信的话,可以试着返回那不使用这方法的古板日子。”
按照爱因斯坦求和约定,当一个单独项目内有标号变数出现两次,一次是上标,一次是下标时,则必须总和所有这单独项目的可能值。通常而言,标号的标值为1、2、3(代表维度为三的欧几里得空间),或0、1、2、3(代表维度为四的时空或闵可夫斯基时空)。但是,标值可以有任意值域,甚至(在某些应用案例里)无限集合。这样,在三维空间里,
的意思是
请特别注意,上标并不是指数,而是标记不同坐标。例如,在直角坐标系里,
、
、
分别表示
坐标、
坐标、
坐标,而不是
、
的平方、
的立方。
爱因斯坦标记法的基本点子是余向量与向量可以形成标量:
通常会将这写为求和公式形式:
在基底变换之下,标量保持不变。当基底改变时,一个向量的线性变换可以用矩阵来描述,而余向量的线性变换则需用其逆矩阵来描述。这样的设计为的是要保证,不论基底为何,伴随余向量的线性函数(即上述总和)保持不变。由于只有总和不变,而总和所涉及的每一个项目都有可能会改变,所以,爱因斯坦提出了这标记法,重复标号表示总和,不需要用到求和符号:
采用爱因斯坦标记法,余向量都是以下标来标记,而向量都是以上标来标记。标号的位置具有特别意义。请不要将上标与指数混淆在一起,大多数涉及的方程式都是线性,不超过变数的一次方。在方程式里,单独项目内的标号变数最多只会出现两次,假若多于两次,或出现任何其它例外,则都必须特别加以说明,才不会造成含意混淆不清。
在线性代数里,采用爱因斯坦标记法,可以很容易的分辨向量和余向量(又称为1-形式)。向量的分量是用上标来标明,例如,
。给予一个
维向量空间
和其任意基底
(可能不是标准正交基),那么,向量
表示为
余向量的分量是用下标来标明,例如,
。给予
的对偶空间
和其任意基底
(可能不是标准正交基),那么,余向量
表示为
采用向量的共变和反变术语,上标表示反变向量(向量)。对于基底的改变,从
改变为
,反变向量会变换为
其中,
是改变基底后的向量的分量,
是改变基底后的坐标,
是原先的坐标,
下标表示共变向量(余向量)。对于基底的改变,从
改变为
,共变向量会会变换为
矩阵
的第
横排,第
竖排的元素,以前标记为
;现在改标记为
。各种一般运算都可以用爱因斯坦标记法来表示如下:
给予向量
和余向量
,其向量和余向量的内积为标量:
给予矩阵
和向量
,它们的乘积是向量
:
类似地,矩阵
的转置矩阵
,其与余向量
的乘积是余向量
:
矩阵乘法表示为
这公式等价于较冗长的普通标记法:
给予一个方块矩阵
,总和所有上标与下标相同的元素
,可以得到这矩阵的迹
:
M维向量
和N维余向量
的外积是一个M×N矩阵
:
采用爱因斯坦标记式,上述方程式可以表示为
由于
和
代表两个不同的标号,在这案例,值域分别为M和N,外积不会除去这两个标号,而使这两个标号变成了新矩阵
的标号。
一般力学及工程学会用互相标准正交基的基底向量
、
及
来描述三维空间的向量。
把直角坐标系的基底向量
、
及
写成
、
及
,所以一个向量可以写成:
根据爱因斯坦求和约定,若单项中有标号出现两次且分别位于上标及下标,则此项代表着所有可能值之总和:
由于基底是标准正交基,
的每一个分量
,所以,
两个向量
与
的内积是
由于基底是标准正交基,基底向量相互正交归一:
其中,
就是克罗内克函数。当
时,则
,否则
。
逻辑上,在方程式内的任意项目,若遇到了克罗内克函数
,就可以把方程式中的标号
转为
或者把标号
相关
- 类脂类脂(Lipoid)是对可溶于脂肪等非极性溶剂,和脂肪有相似性质的物质的统称。类脂分子不一定包含甘油。磷脂、糖脂、鞘磷脂和类固醇都属于类脂。类脂的结构可能与脂肪有很大差别,类
- L03A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码L03(免疫促进药)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collabor
- 静止能量不变质量(invariant mass)或称内秉质量(intrinsic mass)、固有质量(proper mass),亦常简称为质量,指的是一个物体或一个物体系统由总能量和动量构成的在所有参考系下都相同的一个洛
- 福建巡抚福建巡抚,明清时代地方军政官员。
- 3千纪3千纪,或称第3个千年,是指从2001年1月1日至3000年12月31日的1000年,现在(2020年)即处于3千纪当中。公元后:1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10
- 里氏地震震级里氏震级(英语:Richter magnitude scale,港澳称黎克特制地震震级,台湾称芮氏地震规模),亦称近震震级(记作
M
L
- 沙没巴干府 small(北榄府)/small沙没巴干府(泰语:จังหวัดสมุทรปราการ,皇家转写:Changwat Samut Prakan,泰语发音:)是位于泰国中部的一个府。国家机场位于此地。该府泰语别名巴南(泰语:ปากน้
- 中华人民共和国食品安全中华人民共和国食品安全是中华人民共和国(以下简称中国)日益关注的一个议题。中国的主要农作物有水稻、玉米、小麦、大豆、棉花以及苹果等,而主要畜产品有猪肉、牛肉、牛奶以及
- 亚历山大·杜里奇亚历山大·杜里奇(英文:Aleksander Duric;塞尔维亚文:Александар Ђурић),于1970年8月12日生于南斯拉夫波斯尼亚和黑塞哥维那社会主义共和国,是波斯尼亚和黑塞哥维那
- 内联函数在计算机科学中,内联函数(有时称作在线函数或编译时期展开函数)是一种编程语言结构,用来建议编译器对一些特殊函数进行内联扩展(有时称作在线扩展);也就是说建议编译器将指定的函数