玻尔兹曼分布

✍ dations ◷ 2025-11-14 22:39:24 #玻尔兹曼分布
在统计力学与数学中,玻尔兹曼分布(或称吉布斯分布)是系统中的粒子在各种可能微观量子态(英语:microstate (statistical mechanics))的概率分布、概率测度(英语:probability measure),或频度分布(英语:frequency distribution)。具有以下形式F ( s t a t e ) ∝ e − E k T {displaystyle F({rm {state}})propto e^{-{frac {E}{kT}}}}其中 E {displaystyle E} 是量子态能量(随着个别量子态有所不同), k T {displaystyle kT} (对于一个玻尔兹曼分布来说是常数)是玻尔兹曼常数与热力学温度的乘积。而概率分布则可表达为 p i = e − ε i / k T ∑ j = 1 M e − ε j / k T {displaystyle p_{i}={frac {e^{-{varepsilon }_{i}/kT}}{sum _{j=1}^{M}{e^{-{varepsilon }_{j}/kT}}}}}其中 p i {displaystyle p_{i}} 是量子态i的概率, ε i {displaystyle varepsilon _{i}} 是量子态i的能量, k {displaystyle k} 是玻尔兹曼常数, T {displaystyle T} 是系统温度且 M {displaystyle M} 为系统具有的量子态数目。对于两个状态之玻尔兹曼分布的比值,得到玻尔兹曼因子。可见其仅与量子态间的能量差有关。F ( s t a t e 2 ) F ( s t a t e 1 ) = e E 1 − E 2 k T {displaystyle {frac {F({rm {state2}})}{F({rm {state1}})}}=e^{frac {E_{1}-E_{2}}{kT}}}玻尔兹曼分布取自路德维希·玻尔兹曼,他在1868年研究热平衡气体的统计力学时初次构想了此一分布。而后约西亚·威拉德·吉布斯在1902年提出了玻尔兹曼分布更为一般化的形式。:Ch.IV要特别的注意玻尔兹曼分布与麦克斯韦-玻尔兹曼分布的差别。前者给出粒子在各量子态的分布概率,后者则是用来描述粒子在理想气体中的速率分布。玻尔兹曼分布是状态能量与系统温度的函数,给出了粒子处于特定状态下的概率。其具有以下形式:其中 p i {displaystyle p_{i}} 为量子态i的概率, ϵ i {displaystyle epsilon _{i}} 为量子态i之能量, k {displaystyle k} 为玻尔兹曼常数, T {displaystyle T} 为系统温度, M {displaystyle M} 为系统可具有的量子态数目。 分母的部分是对系统所有量子态进行总和,而此部分又被称为配分函数,通常以Q(在某些书中为Z)表示:因此玻尔兹曼分布也可写成:若是知道系统中各状态的能量,可以直接计算此系统的配分函数。各种原子的配分函数可以在NIST Atomic Spectra Database找到。从分布的形式可以看出,低能量的状态比起高能量的状态具有较高的分布概率。同时也能定量地比较两能级分布概率的关系:玻尔兹曼分布通常用于描述粒子的分布,例如原子与分子在各种量子态的分布情形。在多个粒子的情况下,能级的分布概率即对应到处于该能级的粒子数的期望值:其中 N i {displaystyle N_{i}} 为处于i能级中的粒子数, N {displaystyle N} 为系统中的粒子总数。带入玻尔兹曼分布后得到:这个表达式在光谱学中有重要的应用。光谱中的谱线位置代表粒子量子态转移的能量。为了使谱线强度足够,必须有足量粒子处于高量子态,对此可以透过上述表达式确定粒子分布与系统温度、能级差的关系,得到恰当的系统参数。玻尔兹曼分布可应用热平衡的孤立(或近似孤立)系统。最一般的情况为正则系综的概率分布,而在某些特殊情况下(衍生自正则系综)也有相关的应用。在数学上,玻尔兹曼函数更广义的形式为吉布斯测度(英语:Gibbs measure)。在统计学与机器学习中又被称为对数-线性模型(英语:log-linear model)。在深度学习中,玻尔兹曼分布被用于随机神经网络的采样分布,例如玻尔兹曼机,受限玻尔兹曼机和深度玻尔兹曼机。

相关

  • 独立宣言《美国独立宣言》(英语:United States Declaration of Independence),为北美洲十三个英属殖民地宣告自大不列颠王国独立,并宣明此举正当性之文告。1776年7月4日,本宣言由第二次大
  • 持续性植物状态神经科神经科 ICD10 =持续性植物状态(英语:Persistent vegetative state,缩写为 PVS),是指大脑已经完全或大半失去功能,亦即已经失去意识,但尚存活的人。这类病患俗称为植
  • 弹射座椅弹射椅(Ejection seat),或称弹射座椅,是军用飞机及载人太空船飞行员用的座椅,可在紧急情况下将飞行员弹离飞行器并使其安全着陆的航空救生设备,太空船通常是配备逃逸塔,直接将乘员
  • 拿破仑对俄国的进攻法兰西帝国西班牙王国(英语:Kingdom of Spain under Joseph Bonaparte)俄法战争,又称拿破仑征俄战争,是指俄罗斯帝国和拿破仑治下的法兰西第一帝国在1812年爆发的一场战争,是拿破
  • 超滤作用超滤(ultrafiltration (UF) )在膜过滤方法中,一种膜孔径尺寸大致在1.5纳米到0.2微米范围内的过滤,其过滤动力为液体的压力差,过滤机理是通过膜孔筛除作用进行分离。维基共享资源
  • 纤维心包心包,又名心膜,是一个圆锥形双层纤维浆膜囊,包裹心脏和出入心脏大血管根部。心包的两层分别为:心包的学名pericardium来自希腊语的περι(环绕、周围)与κάρδιον(心脏)两字
  • 齿龈齿龈音(舌尖中音)是舌尖音的一种。发音时,舌尖接触牙龈。如现代标准汉语的 d、t、n、l。英语的/t/,/d/塞音是齿龈塞音,但法语、俄语等语言的舌尖塞音会是齿音。得到IPA确认的齿龈
  • 阿兹特克神圣历阿兹特克神圣历(纳瓦特尔语:tonalpohualli,意为“日子的算法”)是墨西哥地区还没被西班牙征服以前,阿兹特克人所使用的历法之一,不过除了阿兹特克祭司外,普罗大众并不通晓其用法。
  • 居士居士是汉语中对人的一类称谓,古为居家不出仕之士,后为佛、道、儒所用,泛指居家修行之士。在佛教中,在家居士(梵语:gṛhapati,巴利语:gahapati,音译迦罗越)分为两众,男称优婆塞(upāsaka),
  • 种族优生种族优生(Racial hygiene),是一种由政府挑选出公认最强健、聪明和有道德的人来培育下一代的制度,与公共卫生和优生学有密切关联。过去为达成目的曾用的手段包括放逐、隔离、强制