玻尔兹曼分布

✍ dations ◷ 2025-10-31 22:49:25 #玻尔兹曼分布
在统计力学与数学中,玻尔兹曼分布(或称吉布斯分布)是系统中的粒子在各种可能微观量子态(英语:microstate (statistical mechanics))的概率分布、概率测度(英语:probability measure),或频度分布(英语:frequency distribution)。具有以下形式F ( s t a t e ) ∝ e − E k T {displaystyle F({rm {state}})propto e^{-{frac {E}{kT}}}}其中 E {displaystyle E} 是量子态能量(随着个别量子态有所不同), k T {displaystyle kT} (对于一个玻尔兹曼分布来说是常数)是玻尔兹曼常数与热力学温度的乘积。而概率分布则可表达为 p i = e − ε i / k T ∑ j = 1 M e − ε j / k T {displaystyle p_{i}={frac {e^{-{varepsilon }_{i}/kT}}{sum _{j=1}^{M}{e^{-{varepsilon }_{j}/kT}}}}}其中 p i {displaystyle p_{i}} 是量子态i的概率, ε i {displaystyle varepsilon _{i}} 是量子态i的能量, k {displaystyle k} 是玻尔兹曼常数, T {displaystyle T} 是系统温度且 M {displaystyle M} 为系统具有的量子态数目。对于两个状态之玻尔兹曼分布的比值,得到玻尔兹曼因子。可见其仅与量子态间的能量差有关。F ( s t a t e 2 ) F ( s t a t e 1 ) = e E 1 − E 2 k T {displaystyle {frac {F({rm {state2}})}{F({rm {state1}})}}=e^{frac {E_{1}-E_{2}}{kT}}}玻尔兹曼分布取自路德维希·玻尔兹曼,他在1868年研究热平衡气体的统计力学时初次构想了此一分布。而后约西亚·威拉德·吉布斯在1902年提出了玻尔兹曼分布更为一般化的形式。:Ch.IV要特别的注意玻尔兹曼分布与麦克斯韦-玻尔兹曼分布的差别。前者给出粒子在各量子态的分布概率,后者则是用来描述粒子在理想气体中的速率分布。玻尔兹曼分布是状态能量与系统温度的函数,给出了粒子处于特定状态下的概率。其具有以下形式:其中 p i {displaystyle p_{i}} 为量子态i的概率, ϵ i {displaystyle epsilon _{i}} 为量子态i之能量, k {displaystyle k} 为玻尔兹曼常数, T {displaystyle T} 为系统温度, M {displaystyle M} 为系统可具有的量子态数目。 分母的部分是对系统所有量子态进行总和,而此部分又被称为配分函数,通常以Q(在某些书中为Z)表示:因此玻尔兹曼分布也可写成:若是知道系统中各状态的能量,可以直接计算此系统的配分函数。各种原子的配分函数可以在NIST Atomic Spectra Database找到。从分布的形式可以看出,低能量的状态比起高能量的状态具有较高的分布概率。同时也能定量地比较两能级分布概率的关系:玻尔兹曼分布通常用于描述粒子的分布,例如原子与分子在各种量子态的分布情形。在多个粒子的情况下,能级的分布概率即对应到处于该能级的粒子数的期望值:其中 N i {displaystyle N_{i}} 为处于i能级中的粒子数, N {displaystyle N} 为系统中的粒子总数。带入玻尔兹曼分布后得到:这个表达式在光谱学中有重要的应用。光谱中的谱线位置代表粒子量子态转移的能量。为了使谱线强度足够,必须有足量粒子处于高量子态,对此可以透过上述表达式确定粒子分布与系统温度、能级差的关系,得到恰当的系统参数。玻尔兹曼分布可应用热平衡的孤立(或近似孤立)系统。最一般的情况为正则系综的概率分布,而在某些特殊情况下(衍生自正则系综)也有相关的应用。在数学上,玻尔兹曼函数更广义的形式为吉布斯测度(英语:Gibbs measure)。在统计学与机器学习中又被称为对数-线性模型(英语:log-linear model)。在深度学习中,玻尔兹曼分布被用于随机神经网络的采样分布,例如玻尔兹曼机,受限玻尔兹曼机和深度玻尔兹曼机。

相关

  • 金融经济学金融经济学(英语:Financial economics)(有人误译为财务经济学)是经济学的分支,主要研究在不确定的环境中,如何跨越时间与空间,配置经济资源。它主要集中在研究货币资产的交易活动,
  • 圣华金谷圣华金谷(英语:San Joaquin Valley /ˌsæn hwɑːˈkiːn/)是美国加利福尼亚州中央谷地的一片地区,位于萨克拉门托-圣何塞河三角洲南部。这片谷地里有八个县,即弗雷斯诺县、克恩
  • 对称性破缺对称性破缺(symmetry breaking)系指物理学里,在具有某种对称性的物理系统之临界点附近发生的微小振荡,通过选择所有可能分岔中的一个分岔,打破了这物理系统的对称性,并且决定了这
  • 乱码乱码指的是电脑系统不能显示正确的字符,而显示其他无意义的字符或空白,如一堆ASCII代码。这样所显示出来的文字统称为乱码。乱码是因为“所使用的字符的源码在本地计算机上使
  • 托斯卡纳托斯卡纳(意大利语:Toscana,发音:),也译为托斯卡尼、塔斯卡尼,是意大利一个大区,拉齐奥位于其南,翁布里亚位于其东,艾米利亚-罗马涅和利古里亚在其北,西濒第勒尼安海。它经常被评价为意
  • 比利·简·金比利·简·金(英语:Billie Jean King,1943年11月22日-),原姓Moffitt,美国职业网球运动员。她赢得了12个大满贯单打冠军,16个大满贯女双冠军和11个大满贯混双冠军。她与玛蒂娜·纳芙
  • 裸麦Secale fragile M.Bieb.裸麦(学名:Secale cereale)又称黑麦,是一种在温带地区分布很广的谷物。黑麦是一种比较新的谷物,在欧洲古代时期这种谷物还不为人所知,它本来被认为是一种杂
  • 台北当代艺术馆坐标:25°03′02″N 121°31′07″E / 25.05056°N 121.51861°E / 25.05056; 121.51861台北市政府旧厦(原建成小学校),位于台湾台北市大同区长安西路上,现为建成国中及台北当代
  • 首个海外军事基地中国人民解放军军徽中国人民解放军驻吉布提保障基地(The Chinese PLA Support Base in Djibouti),位于吉布提吉布提市,是中国人民解放军的驻外保障基地,隶属中国人民解放军海军,也
  • 东格陵兰寒流东格陵兰洋流(East Greenland Current)由源自北冰洋,带来冰冻、低盐度、往南的水流沿着东格陵兰岸边。东格陵兰洋流为形成近极地环流(gyre)的五条主要洋流之一,并提供北冰洋的冰冻