玻尔兹曼分布

✍ dations ◷ 2024-12-22 21:55:43 #玻尔兹曼分布
在统计力学与数学中,玻尔兹曼分布(或称吉布斯分布)是系统中的粒子在各种可能微观量子态(英语:microstate (statistical mechanics))的概率分布、概率测度(英语:probability measure),或频度分布(英语:frequency distribution)。具有以下形式F ( s t a t e ) ∝ e − E k T {displaystyle F({rm {state}})propto e^{-{frac {E}{kT}}}}其中 E {displaystyle E} 是量子态能量(随着个别量子态有所不同), k T {displaystyle kT} (对于一个玻尔兹曼分布来说是常数)是玻尔兹曼常数与热力学温度的乘积。而概率分布则可表达为 p i = e − ε i / k T ∑ j = 1 M e − ε j / k T {displaystyle p_{i}={frac {e^{-{varepsilon }_{i}/kT}}{sum _{j=1}^{M}{e^{-{varepsilon }_{j}/kT}}}}}其中 p i {displaystyle p_{i}} 是量子态i的概率, ε i {displaystyle varepsilon _{i}} 是量子态i的能量, k {displaystyle k} 是玻尔兹曼常数, T {displaystyle T} 是系统温度且 M {displaystyle M} 为系统具有的量子态数目。对于两个状态之玻尔兹曼分布的比值,得到玻尔兹曼因子。可见其仅与量子态间的能量差有关。F ( s t a t e 2 ) F ( s t a t e 1 ) = e E 1 − E 2 k T {displaystyle {frac {F({rm {state2}})}{F({rm {state1}})}}=e^{frac {E_{1}-E_{2}}{kT}}}玻尔兹曼分布取自路德维希·玻尔兹曼,他在1868年研究热平衡气体的统计力学时初次构想了此一分布。而后约西亚·威拉德·吉布斯在1902年提出了玻尔兹曼分布更为一般化的形式。:Ch.IV要特别的注意玻尔兹曼分布与麦克斯韦-玻尔兹曼分布的差别。前者给出粒子在各量子态的分布概率,后者则是用来描述粒子在理想气体中的速率分布。玻尔兹曼分布是状态能量与系统温度的函数,给出了粒子处于特定状态下的概率。其具有以下形式:其中 p i {displaystyle p_{i}} 为量子态i的概率, ϵ i {displaystyle epsilon _{i}} 为量子态i之能量, k {displaystyle k} 为玻尔兹曼常数, T {displaystyle T} 为系统温度, M {displaystyle M} 为系统可具有的量子态数目。 分母的部分是对系统所有量子态进行总和,而此部分又被称为配分函数,通常以Q(在某些书中为Z)表示:因此玻尔兹曼分布也可写成:若是知道系统中各状态的能量,可以直接计算此系统的配分函数。各种原子的配分函数可以在NIST Atomic Spectra Database找到。从分布的形式可以看出,低能量的状态比起高能量的状态具有较高的分布概率。同时也能定量地比较两能级分布概率的关系:玻尔兹曼分布通常用于描述粒子的分布,例如原子与分子在各种量子态的分布情形。在多个粒子的情况下,能级的分布概率即对应到处于该能级的粒子数的期望值:其中 N i {displaystyle N_{i}} 为处于i能级中的粒子数, N {displaystyle N} 为系统中的粒子总数。带入玻尔兹曼分布后得到:这个表达式在光谱学中有重要的应用。光谱中的谱线位置代表粒子量子态转移的能量。为了使谱线强度足够,必须有足量粒子处于高量子态,对此可以透过上述表达式确定粒子分布与系统温度、能级差的关系,得到恰当的系统参数。玻尔兹曼分布可应用热平衡的孤立(或近似孤立)系统。最一般的情况为正则系综的概率分布,而在某些特殊情况下(衍生自正则系综)也有相关的应用。在数学上,玻尔兹曼函数更广义的形式为吉布斯测度(英语:Gibbs measure)。在统计学与机器学习中又被称为对数-线性模型(英语:log-linear model)。在深度学习中,玻尔兹曼分布被用于随机神经网络的采样分布,例如玻尔兹曼机,受限玻尔兹曼机和深度玻尔兹曼机。

相关

  • 盐酸异丙嗪盐酸异丙嗪(英语:Promethazine,又名盐酸普鲁米近(Promethazine Hydrochloride)或非那根(Phenergan))是一种常见的止咳药物,为第一代抗组织胺药,能竞争性阻断组胺H1受体,对抗组胺所
  • 空间群在数学和物理学中,空间群(space group)是空间中(通常是三维空间)一种形态的空间对称群。在三维空间中有219种不同的类型,或230种不同的手性类型。对超过三维的空间中的空间群也有
  • 算法算法(algorithm),在数学(算学)和计算机科学之中,为任何一系列良定义的具体计算步骤,常用于计算、数据处理(英语:Data processing)和自动推理。作为一个有效方法(英语:Effective method),算
  • 准晶体准晶体,亦称为“准晶”或“拟晶”,是一种介于晶体和非晶体之间的固体。准晶体具有与晶体相似的长程有序的原子排列;但是准晶体不具备晶体的平移对称性。根据晶体局限定理(crysta
  • Mgsub2/subSn锡化镁是一种二元金属间化合物,化学式为Mg2Sn。锡化镁可由相应化学计量比的单质共熔得到:锡化镁是浅蓝色的晶体,属立方晶系,空间群Fm3m,晶胞参数a = 0.67594 nm, Z = 4,具有CaF2结
  • 南达科他州南达科他州(英语:State of South Dakota),简称南达州,是美国中西部平原上地势较高的一州,过去曾是美国印地安人苏族中拉科他族(Lakota)的聚落所在。南达科他州在1889年11月2日加入美
  • 台北市立体育学院台北市立大学天母校区(简称北市大天母),是台北市立大学位于台北市士林区的校区。前身“台北市立体育学院”,2013年8月与台北市立教育大学(校区为今日台北市立大学博爱校区)合并“
  • 曲线曲线的普通定义就是在几何空间中的“弯曲了的线”。而直线是一种特殊的曲线,只不过它的曲率为零。在《解析几何》中,曲线用一组连续函数的方程组来表示。曲线和直线都是指欧几
  • 洞穴壁画石洞壁画是在洞穴或岩石上的绘画,有时也称为岩画。一般多为史前所做。使用的颜料包括红色和黄色赭石,赤铁矿,氧化锰和木炭。最早的石洞壁画可以上溯到4万年前。中国岩画分布极
  • 马德里三一一爆炸案马德里三一一连环爆炸案(西班牙语:Atentados del 11 de marzo de 2004;常被简称为11-M)是指一系列发生在2004年3月11日针对西班牙首都马德里市郊铁路系统的恐怖主义炸弹袭击。在