玻尔兹曼分布

✍ dations ◷ 2025-10-20 09:38:31 #玻尔兹曼分布
在统计力学与数学中,玻尔兹曼分布(或称吉布斯分布)是系统中的粒子在各种可能微观量子态(英语:microstate (statistical mechanics))的概率分布、概率测度(英语:probability measure),或频度分布(英语:frequency distribution)。具有以下形式F ( s t a t e ) ∝ e − E k T {displaystyle F({rm {state}})propto e^{-{frac {E}{kT}}}}其中 E {displaystyle E} 是量子态能量(随着个别量子态有所不同), k T {displaystyle kT} (对于一个玻尔兹曼分布来说是常数)是玻尔兹曼常数与热力学温度的乘积。而概率分布则可表达为 p i = e − ε i / k T ∑ j = 1 M e − ε j / k T {displaystyle p_{i}={frac {e^{-{varepsilon }_{i}/kT}}{sum _{j=1}^{M}{e^{-{varepsilon }_{j}/kT}}}}}其中 p i {displaystyle p_{i}} 是量子态i的概率, ε i {displaystyle varepsilon _{i}} 是量子态i的能量, k {displaystyle k} 是玻尔兹曼常数, T {displaystyle T} 是系统温度且 M {displaystyle M} 为系统具有的量子态数目。对于两个状态之玻尔兹曼分布的比值,得到玻尔兹曼因子。可见其仅与量子态间的能量差有关。F ( s t a t e 2 ) F ( s t a t e 1 ) = e E 1 − E 2 k T {displaystyle {frac {F({rm {state2}})}{F({rm {state1}})}}=e^{frac {E_{1}-E_{2}}{kT}}}玻尔兹曼分布取自路德维希·玻尔兹曼,他在1868年研究热平衡气体的统计力学时初次构想了此一分布。而后约西亚·威拉德·吉布斯在1902年提出了玻尔兹曼分布更为一般化的形式。:Ch.IV要特别的注意玻尔兹曼分布与麦克斯韦-玻尔兹曼分布的差别。前者给出粒子在各量子态的分布概率,后者则是用来描述粒子在理想气体中的速率分布。玻尔兹曼分布是状态能量与系统温度的函数,给出了粒子处于特定状态下的概率。其具有以下形式:其中 p i {displaystyle p_{i}} 为量子态i的概率, ϵ i {displaystyle epsilon _{i}} 为量子态i之能量, k {displaystyle k} 为玻尔兹曼常数, T {displaystyle T} 为系统温度, M {displaystyle M} 为系统可具有的量子态数目。 分母的部分是对系统所有量子态进行总和,而此部分又被称为配分函数,通常以Q(在某些书中为Z)表示:因此玻尔兹曼分布也可写成:若是知道系统中各状态的能量,可以直接计算此系统的配分函数。各种原子的配分函数可以在NIST Atomic Spectra Database找到。从分布的形式可以看出,低能量的状态比起高能量的状态具有较高的分布概率。同时也能定量地比较两能级分布概率的关系:玻尔兹曼分布通常用于描述粒子的分布,例如原子与分子在各种量子态的分布情形。在多个粒子的情况下,能级的分布概率即对应到处于该能级的粒子数的期望值:其中 N i {displaystyle N_{i}} 为处于i能级中的粒子数, N {displaystyle N} 为系统中的粒子总数。带入玻尔兹曼分布后得到:这个表达式在光谱学中有重要的应用。光谱中的谱线位置代表粒子量子态转移的能量。为了使谱线强度足够,必须有足量粒子处于高量子态,对此可以透过上述表达式确定粒子分布与系统温度、能级差的关系,得到恰当的系统参数。玻尔兹曼分布可应用热平衡的孤立(或近似孤立)系统。最一般的情况为正则系综的概率分布,而在某些特殊情况下(衍生自正则系综)也有相关的应用。在数学上,玻尔兹曼函数更广义的形式为吉布斯测度(英语:Gibbs measure)。在统计学与机器学习中又被称为对数-线性模型(英语:log-linear model)。在深度学习中,玻尔兹曼分布被用于随机神经网络的采样分布,例如玻尔兹曼机,受限玻尔兹曼机和深度玻尔兹曼机。

相关

  • 过敏性鼻炎过敏性鼻炎,又称为鼻敏感、干草热、花粉热、花粉症或季节性过敏性鼻炎,是因为免疫系统受到空气中的过敏原影响而导致的鼻炎症状。征兆和病症包括流鼻涕或鼻塞、打喷嚏、眼睛的
  • 电子处方电子处方(英文:electronic prescribing,或者e-prescribing),又称为开具电子处方、开立电子处方、 电子处方开立,是指医师利用实时的,病人特异性的临床信息和财务信息,为让病人知情同
  • 恐爪龙恐爪龙属(属名:Deinonychus)是驰龙科恐龙的一属,身长约2.5-4米,生活于下白垩纪的阿普第阶中期至阿尔布阶早期,距今约1亿1500万至1亿800万年前。它的学名是来自古希腊文的“δει
  • 龙舌兰酒龙舌兰酒(西班牙文:Tequila),是墨西哥产、使用龙舌兰草的心(Piña,在植物学上,指的是这种植物的鳞茎部分)为原料所制造出的含酒精饮品,属蒸馏酒一类。通常提到龙舌兰酒时,可能意指的是
  • 四诊中医诊断学是根据中医学理论,研究诊查病情、判断病种、辨别证候的基础理论、基本知识和基本技能的一门学科。中医诊断学主要包括诊法学和辨证学两部,两者相互渗透,相互联系。中
  • SeOsub2/sub二氧化硒是一种无机化合物,化学式为SeO2。它是白色晶体,加压液化后可以得到黄色液体,常压下加热至317℃升华,得到绿色蒸气。它和空气中的灰尘接触后,遇光即被还原为硒单质而变红
  • CuO氧化铜(化学式:CuO)是铜的氧化物,为黑色固体。属于强电解质。不溶于水和乙醇,溶于酸、氯化铵及氰化钾溶液,氨溶液中缓慢溶解。氧化铜可由氢氧化铜的热分解制得:氧化铜在一定温度下,
  • 850110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 涓流充电涓流就是以低速率且恒定方式对电池提供很小的充电电流。大部分充电池充满后,由于自放电现象(英语:Self-discharge)会不停流失电量。若继续以相同于自放电率之小电流充电,可维持电
  • 钱德勒摆动钱德勒摆动(Chandler wobble),又译为钱德勒震颤,是地球自转轴相对于地球表面的小幅度运动,由美国天文学家赛斯·卡罗·钱德勒发现于1891年。该运动以433日周期在地球表面摆动。钱