玻尔兹曼分布

✍ dations ◷ 2025-11-21 21:45:26 #玻尔兹曼分布
在统计力学与数学中,玻尔兹曼分布(或称吉布斯分布)是系统中的粒子在各种可能微观量子态(英语:microstate (statistical mechanics))的概率分布、概率测度(英语:probability measure),或频度分布(英语:frequency distribution)。具有以下形式F ( s t a t e ) ∝ e − E k T {displaystyle F({rm {state}})propto e^{-{frac {E}{kT}}}}其中 E {displaystyle E} 是量子态能量(随着个别量子态有所不同), k T {displaystyle kT} (对于一个玻尔兹曼分布来说是常数)是玻尔兹曼常数与热力学温度的乘积。而概率分布则可表达为 p i = e − ε i / k T ∑ j = 1 M e − ε j / k T {displaystyle p_{i}={frac {e^{-{varepsilon }_{i}/kT}}{sum _{j=1}^{M}{e^{-{varepsilon }_{j}/kT}}}}}其中 p i {displaystyle p_{i}} 是量子态i的概率, ε i {displaystyle varepsilon _{i}} 是量子态i的能量, k {displaystyle k} 是玻尔兹曼常数, T {displaystyle T} 是系统温度且 M {displaystyle M} 为系统具有的量子态数目。对于两个状态之玻尔兹曼分布的比值,得到玻尔兹曼因子。可见其仅与量子态间的能量差有关。F ( s t a t e 2 ) F ( s t a t e 1 ) = e E 1 − E 2 k T {displaystyle {frac {F({rm {state2}})}{F({rm {state1}})}}=e^{frac {E_{1}-E_{2}}{kT}}}玻尔兹曼分布取自路德维希·玻尔兹曼,他在1868年研究热平衡气体的统计力学时初次构想了此一分布。而后约西亚·威拉德·吉布斯在1902年提出了玻尔兹曼分布更为一般化的形式。:Ch.IV要特别的注意玻尔兹曼分布与麦克斯韦-玻尔兹曼分布的差别。前者给出粒子在各量子态的分布概率,后者则是用来描述粒子在理想气体中的速率分布。玻尔兹曼分布是状态能量与系统温度的函数,给出了粒子处于特定状态下的概率。其具有以下形式:其中 p i {displaystyle p_{i}} 为量子态i的概率, ϵ i {displaystyle epsilon _{i}} 为量子态i之能量, k {displaystyle k} 为玻尔兹曼常数, T {displaystyle T} 为系统温度, M {displaystyle M} 为系统可具有的量子态数目。 分母的部分是对系统所有量子态进行总和,而此部分又被称为配分函数,通常以Q(在某些书中为Z)表示:因此玻尔兹曼分布也可写成:若是知道系统中各状态的能量,可以直接计算此系统的配分函数。各种原子的配分函数可以在NIST Atomic Spectra Database找到。从分布的形式可以看出,低能量的状态比起高能量的状态具有较高的分布概率。同时也能定量地比较两能级分布概率的关系:玻尔兹曼分布通常用于描述粒子的分布,例如原子与分子在各种量子态的分布情形。在多个粒子的情况下,能级的分布概率即对应到处于该能级的粒子数的期望值:其中 N i {displaystyle N_{i}} 为处于i能级中的粒子数, N {displaystyle N} 为系统中的粒子总数。带入玻尔兹曼分布后得到:这个表达式在光谱学中有重要的应用。光谱中的谱线位置代表粒子量子态转移的能量。为了使谱线强度足够,必须有足量粒子处于高量子态,对此可以透过上述表达式确定粒子分布与系统温度、能级差的关系,得到恰当的系统参数。玻尔兹曼分布可应用热平衡的孤立(或近似孤立)系统。最一般的情况为正则系综的概率分布,而在某些特殊情况下(衍生自正则系综)也有相关的应用。在数学上,玻尔兹曼函数更广义的形式为吉布斯测度(英语:Gibbs measure)。在统计学与机器学习中又被称为对数-线性模型(英语:log-linear model)。在深度学习中,玻尔兹曼分布被用于随机神经网络的采样分布,例如玻尔兹曼机,受限玻尔兹曼机和深度玻尔兹曼机。

相关

  • 香菇香菇(学名:Lentinula edodes)又叫做冬菇、北菇、香蕈、厚菇、薄菇、花菇、椎茸,为小皮伞科香菇属的物种,是一种食用菇类。一般食用的成员为,鲜香菇脱水即成干香菇,而且会产生浓郁特
  • 自然主义自然主义通常是指综合唯物主义和实用主义、不探究自然界中超自然因素的哲学立场,其理论基础认为所有现象皆可用自然理由的概念解释。自然主义不一定认为超自然现象和对于不存
  • 高等教育高等教育(法语:Études Supérieures;德语:Höhere Bildung;英语:Higher Education;西班牙语:Educación Superior),又称专上教育(英语:Post-secondary Education)是一个教育层级的概念,广
  • 巧茶巧茶(学名:Catha edulis)为卫矛科巧茶属的植物,又名阿比西尼亚茶(Abyssinian tea)、埃塞俄比亚茶(Ethiopian tea)、索马里茶(Somali tea)、阿拉伯茶(Arabian tea)、也门茶、布希曼茶(Bush
  • 棕榈树棕榈科(学名:Arecaceae)又称槟榔科,棕榈目下的一个科。目前已知棕榈科下有202属,大约2,800余种。本科植物一般是单干直立,不分枝,一般为乔木,也有不少是灌木或藤本植物(如省藤属)。叶
  • 自发过程自发过程(英语:spontaneous process),或自发程序,是系统随时间释放自由能、移往自由能更低且更加热力学平衡的能量状态的过程。自由能变化的正负值取决于热力学的测量传统,当系统
  • 卷云卷云(拉丁文学名:Cirrus,代号:Ci)在高空形成,有丝缕结构,柔丝般光泽,色白无暗影,多分离散乱。云体常呈丝条状、马尾状、钩状、片状、砧状等。卷云主要又可再分为四种云状:
  • WOsub3/sub三氧化钨(化学式:WO3)是钨(VI)的氧化物,是从钨矿制取单质钨工业的重要中间体。该冶炼过程涉及两步:第一步用碱处理钨矿,制得WO3,然后用碳或氢气还原三氧化钨,得到金属钨:三氧化钨可由
  • 针叶针叶是裸子植物常见的叶子外形。针叶的最外层为表皮(Epidermis),而内面紧接有一层皮下层(Hypodermis)。表层细胞强木质化,表面上有很厚的角质层。表皮上有稀疏的气孔器,而且气
  • 平等机会机会平等,指社会上每个人获得发展之机会并不因其种族、出身、贫富、性别、性倾向等因素而有所差异。平等机会与法律之前人人平等之概念有关。平等机会并不确保、亦不要求有结