首页 >
反证法
✍ dations ◷ 2025-06-28 04:03:15 #反证法
反证法(又称背理法)是一种论证方式,他首先假设某命题成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。反证法与归谬法相似,但归谬法不仅包括推理出矛盾结果,也包括推理出不符事实的结果或显然荒谬不可信的结果。给出命题
p
{displaystyle p}
和命题
p
¯
{displaystyle {bar {p}}}
(非
p
{displaystyle p}
),根据排中律,两者之中起码有一个是真(更强的说法为,除了真和假之外并无其他的情况),所以如果其中一个是假的,另一个就必然是真。给出命题
q
{displaystyle q}
和命题
q
¯
{displaystyle {bar {q}}}
(非
q
{displaystyle q}
),根据无矛盾律,两者同时为真的情况为假。给出命题
p
{displaystyle p}
和
r
{displaystyle r}
,根据否定后件律,如果若
p
{displaystyle p}
成立时出现
r
{displaystyle r}
,则
r
{displaystyle r}
为假时
p
{displaystyle p}
即为假。反证法在要证明
p
{displaystyle p}
时,透过显示出若
p
¯
{displaystyle {bar {p}}}
成立时出现矛盾(
q
{displaystyle q}
和
q
¯
{displaystyle {bar {q}}}
),即
p
¯
{displaystyle {bar {p}}}
为假,从而证明
p
{displaystyle p}
为真。2
{displaystyle {sqrt {2}}}
是无理数的证明(古希腊人)证明:假设
2
{displaystyle {sqrt {2}}}
是有理数,那么可以写成 p/q 的形式,其中 p、q 皆为正整数且 p、q 互质。那么有可得 p² 是偶数。而只有偶数的平方才是偶数,所以 p 也是偶数。因此可设 p=2s,代入上式,得:q²=2s²。所以 q ²也是偶数,故可得 q 也是偶数。这样 p、q 都是偶数,不互质,这与假设 p、q 互质矛盾,假设不成立。因此
2
{displaystyle {sqrt {2}}}
为无理数。数学上有许多的定理可用反证法来证明,以下是一小部分的例子:
相关
- 抗体抗体(antibody),又称免疫球蛋白(immunoglobulin,简称Ig),是一种主要由浆细胞分泌,被免疫系统用来鉴别与中和外来物质如细菌、病毒等病原体的大型Y形蛋白质,仅被发现存在于脊椎动物的
- 拉丁文拉丁语(拉丁语:lingua latīna,IPA:),是印欧语系的意大利语族语言,于古罗马广泛使用,至少可追溯至罗马帝国的奥古斯都皇帝时期,当时所使用的书面语称为“古典拉丁语”。拉丁语是最早
- 布拉格学派布拉格学派(捷克语:Pražská škola,英语:Prague school)又称布拉格语言学小组,是20世纪30年代受索绪尔影响,而在捷克斯洛伐克首都布拉格形成的一支结构主义语言学流派。与哥本哈
- 钙离子4s22, 8, 8, 2蒸气压第一:589.8 kJ·mol−1 第二:1145.4 kJ·mol−1 第三:4912.4 kJ·mol−1 (主条目:钙的同位素钙(Calcium)是一种化学元素。其化学符号是Ca,原子序数是20。钙
- 约翰·雷约翰·雷(John Ray,1627年11月29日-1705年1月17日)为英国博物学家,其有时被誉为英国博物学之父。他发表了大量植物学、动物学及自然神学方面的著作。在其专著《Historia Plantaru
- abbr class=abbr title=R26: 吸入剧毒R26/abbr警示性质标准词(英语:Risk Phrases,简写:R-phrases)是于《欧联指导标准67/548/EEC 附录III: 有关危险物品与其储备的特殊风险性质》里定义。该列表被集中并再出版于指导标准2001/
- 长城鸟长城鸟属(属名:Changchengornis)是一种生存于下白垩纪的鸟类。它的化石于中国的炒米店子组发现,介乎于巴列姆阶与阿普第阶的边界,年代约1亿2500万年前。长城鸟除了模式标本(编号 G
- β逆转录病毒属β反转录病毒是反转录病毒科下的一个属,此属的病毒具有B型或C型的外观。老鼠乳癌病毒(mouse mammary tumour virus)就是一个例子。
- 朗缪尔欧文·朗缪尔(英语:Irving Langmuir,1881年1月31日-1957年8月16日),美国化学家、物理学家。他最知名的出版物是1919年发表的文章"电子在原子与分子中的排列"("The Arrangement of E
- 级联反应串联反应又称为级联反应,通常是一系列连续的分子内有机反应,有机反应是借由高活性的中间体进行的。它使单一无环的前驱体进行有机合成为一多核分子的复合体。定义为从前提分子