阿蒂亚-辛格指标定理

✍ dations ◷ 2025-09-09 22:45:14 #微分几何,椭圆型偏微分方程,数学定理

在数学中,阿蒂亚-辛格指标定理断言:对于紧流形上的椭圆偏微分算子,其解析指标(与解空间的维度相关)等于拓扑指标(决定于流形的拓扑性状)。它涵摄了微分几何中许多大定理,例如陈-高斯-博内定理和黎曼-罗赫定理,在理论物理学中亦有应用。

此定理由迈克尔·阿蒂亚与艾沙道尔·辛格于1963年证出。

D {\displaystyle D} 次齐次多项式。若此多项式满足 P ( y ) = 0 y = 0 {\displaystyle P({\vec {y}})=0\Leftrightarrow {\vec {y}}=0} 维紧微分流形,椭圆偏微分算子 D : E F {\displaystyle D:E\to F} 的拓扑指标定义为

换言之,是同调类 c h ( D ) T d ( X ) {\displaystyle \mathrm {ch} (D)\mathrm {Td} (X)} 的最高维项在 X {\displaystyle X} 的基本同调类上的取值。在此:

符号同前。椭圆算子 D {\displaystyle D} 的解析指标在微小的扰动下不变,因此产生了一个自然的问题,称为指标问题:可否以流形 X {\displaystyle X} 及向量丛 E , F {\displaystyle E,F} 的拓扑不变量表示解析指标?

阿蒂亚-辛格指标定理给出的解答是:

解析指标通常难以计算,而拓扑指标尽管定义复杂,却往往有直截了当的几何意义。借由选取适当的椭圆算子 D : E F {\displaystyle D:E\to F} ,指标定理可以给出丰富的几何信息。

X {\displaystyle X} 为有定向的紧流形。任选一黎曼度量,取 E := e v e n T X {\displaystyle E:=\bigwedge ^{\mathrm {even} }T^{*}X} ,并取 F := o d d T X {\displaystyle F:=\bigwedge ^{\mathrm {odd} }T^{*}X} ,定义算子 D := d + d : E F {\displaystyle D:=d+d^{*}:E\to F} 。此时的拓扑指标等于 X {\displaystyle X} 的欧拉示性数,解析指标等于 i ( 1 ) i dim H D R i ( X ) {\displaystyle \sum _{i}(-1)^{i}\dim H_{\mathrm {DR} }^{i}(X)}

X {\displaystyle X} 为紧复流形, V {\displaystyle V} 为其上的复向量丛。定义

则解析指标等于

而拓扑指标等于

流形的Â亏格是个有理数。对于自旋流形,这个值总是整数,若 dim X 4 mod 8 {\displaystyle \dim X\equiv 4\mod 8} ,则它还是个偶数。这个定理可以由指标定理导出,方法是考虑适当的狄拉克算子;当 dim X 4 mod 8 {\displaystyle \dim X\equiv 4\mod 8} 时,此算子的核与余核带有四元数环上的向量空间结构,其复维度必为偶数,因此解析指标也必然是偶数。

盖尔芳特首先注意到解析指标的同伦不变性,并在1959年提出了椭圆算子的指标问题,希望以流形的拓扑不变量描述解析指标。黎曼-罗赫定理是最早知道的特例;另一方面,波莱尔与希策布鲁赫早先证明了自旋流形的Â亏格的整性,并猜想这个性质可以由某个狄拉克算子的指标诠释。这个问题也由阿蒂亚与辛格在1961年联手解决。

阿蒂亚与辛格在1963年宣布他们的指标定理,但一直没有正式发表,只出现在 Palais 在1965年出版的书上。他们在1968年发表了第二个证明,用K理论取代了初版证明中的配边论手法。

阿蒂亚、博特与 Patodi 在 1973 年以热传导方程的手法给出另一个证明。格茨勒基于爱德华·维腾(1982)及 Alvarez-Gaume(1983)的想法,给出了局部狄拉克算子的局部指标定理的简短证明,这涵摄了实际应用中的大多数例子。

伪微分算子的想法可以从欧氏空间上的常系数偏微分算子解释,在此情况下,这些算子不外是多项式函数的傅立叶变换;如果我们容许更一般的函数,其傅立叶变换就构成了伪微分算子。对于一般的流形,可以透过局部坐标系定义伪微分算子,只是手续稍微繁琐一些。

指标定理的许多证明中都利用伪微分算子,而非一般的微分算子,因为前者的理论更富弹性。举例来说,椭圆算子的伪逆不是微分算子,却仍是伪微分算子;另一方面,群 K ( B ( X ) , S ( X ) ) {\displaystyle K(B(X),S(X))} 的元素对应到椭圆伪微分算子的符号。

对伪微分算子可以定义阶数,这个数可以是任意实数,甚至是负无穷大;此外也能定义其符号。椭圆伪微分算子定义为些对长度够长的余切向量为可逆的伪微分算子。指标定理的多数版本皆可推广到椭圆伪微分算子的情形。

指标定理的首个证明奠基于希策布鲁赫-黎曼-罗赫定理,并运用到配边理论与伪微分算子。想法简述如下。

考虑由资料 ( X , V ) {\displaystyle (X,V)} 构成的环,其中 X {\displaystyle X} 是紧定向微分流形, V X {\displaystyle V\to X} 是向量丛,其加法与乘法分别由不交并与积导出;我们考虑此环对关系 ( X , V | X ) 0 {\displaystyle (\partial X,V|_{\partial X})\sim 0} 的商环。这个构造类似于配边环,不过此时我们还虑及流形上的向量丛。解析指标与拓扑指标皆可诠释为从此环映至整数环的同态。托姆的配边理论给出了这个环的一组生成元,我们可以对这些较简单的例子验证指标定理,从而导出一般的情形。

阿蒂亚与辛格正式发表的第一个证明采用了K-理论。设 X , Y {\displaystyle X,Y} 为紧流形, i : X Y {\displaystyle i:X\to Y} 为闭浸入,他们对椭圆算子定义了一个推前运算 i ! {\displaystyle i_{!}} ,并证明 i ! {\displaystyle i_{!}} 保持指标。我们一方面可取 Y {\displaystyle Y} 为一个包括 X {\displaystyle X} 的高维球面;另一方面,仍取 Y {\displaystyle Y} 为前述球面,而 X {\displaystyle X} 为其内一点。由于 i ! {\displaystyle i_{!}} 保持指标,而拓扑指标也具备相容的运算,两相比较后可将指标定理化约到一个点的情形,此时极易证明。

阿蒂亚、博特 与 Patodi 在1973年给出了热传导方程手法的证明。格茨勒、伯利纳与弗尼在2002年给出一个精神相近的简化证明,其中利用了超对称的想法。

D {\displaystyle D} 为偏微分算子, D {\displaystyle D^{*}} 为其伴随算子,则 D D {\displaystyle D^{*}D} D D {\displaystyle DD^{*}} 是自伴算子,并具有相同的非零特征值(记入重数),但是它们核空间不一定有相同维度。 D {\displaystyle D} 的指标写作

在此 t > 0 {\displaystyle t>0} 可任取。

上式右侧是两个热核的差,它们在 t 0 + {\displaystyle t\to 0+} 时有渐近表示式,它乍看复杂,但不变量理论表明其中有许多相销项,借此可明确写下领导项,由此可证出指标定理。这些相销现象稍后也得到超对称理论的诠释。

其中的每个箭头都是伪微分算子,其符号构成一个正合复形。当只有两项非零时,前述条件等价于其间的算子是椭圆的,因此椭圆算子是椭圆复形的特例。反过来说,给定一个椭圆复形,分别考虑其奇次项与偶次项的直和,其间的映射由原复形的映射及伴随映射给出,如此则可得到椭圆算子。

当阿蒂亚与辛格在2004年获得阿贝尔奖时,公告上是这么形容阿蒂亚-辛格指标定理的:

艾雪著名的诡异作品《升降》解释了一个简单的例子。图中的人们一直在上坡,却仍绕行着城堡的天井。指标定理可以告诉它们:这是办不到的。

相关

  • 音拍音拍(英语:mora)是语言学上以固定长度划分的时间单位,与音节不同。在汉语中,每一个音节的长度几乎是一样的(例如普通话中,“汉”han和“哈”ha长度相同),因此,汉语中可以说音节就是拍
  • 异族融合实证主义 · 反实证主义(英语:Antipositivism) 结构主义 · 冲突理论 中层理论 · 形式理论 批判理论人口 · 团体 · 组织(英语:Organizational theory) · 社会化 社会性
  • Google+Google+(Google Plus,简称:G+或GPlus)是Google公司推出的社交网站与身份服务;除社交网站身份外,Google也将Google+视为其旗下众多服务之间社交层面的补强,与传统社交网站仅能登录单
  • 大河狸大河狸属(学名:)是河狸已灭绝的一个属,生存年代为上新世晚期至更新世晚期,此类生物与北美洲同期的巨河狸没有直接关系。大河狸的化石在英国、欧洲、西伯利亚、中国云南均有发现,其
  • 氧化锂铁磷由台湾长园科(8038)自己研发,并于2009年取得美国氧化锂铁磷正极材料专利,属于缺陷性橄榄石结构因主要材料是氧化铁 , 锂离子. 可在空气中烧制, 成本仅需磷酸锂铁的三分之
  • 博恩哈德三世 (萨克森-迈宁根)博恩哈德三世·弗雷德里克·威廉·阿尔布雷希特·格奥尔格(Bernhard III Frederick Wilhelm Albrecht Georg,1851年4月1日-1928年1月16日),出生于迈宁根。萨克森-迈宁根末代公爵
  • 伊恩·麦凯伦伊恩·麦凯伦爵士,CH,CBE(Sir Ian McKellen,1939年5月25日-)是一位英国男演员,被誉为是英国最杰出的演员之一。伊恩·麦凯伦的戏路甚广,包括在舞台上演出严肃的莎士比亚剧作、现代戏
  • 夏洛特公主 (剑桥)女王陛下 爱丁堡公爵殿下剑桥夏洛特公主(英语:Princess Charlotte of Cambridge,2015年5月2日-),全名为夏洛特·伊丽莎白·戴安娜(Charlotte Elizabeth Diana),是剑桥公爵威廉王子与
  • 通用电气GE9X通用电气GE9X(英语:General Electric GE9X)是通用电气研制的大涵道比涡轮风扇发动机,用于波音777X机型上。该发动机由通用电气GE90发动机衍生而来,燃油效率将得到约10%的提升。并
  • 鸳渊孝鸳渊孝 (日语:おしぶち たかし,1919年10月14日-1945年7月24日)是大日本帝国海军第68期军人, 也是太平洋战争的王牌飞行员,战死后追晋一阶,最终阶级为海军少佐。鸳渊孝生于1919年(大正