首页 >
自由扩散
✍ dations ◷ 2024-12-22 13:53:44 #自由扩散
扩散作用是一个基于分子热运动的输运现象,是分子通过布朗运动从高浓度区域(或高化势)向低浓度区域(或低化势)的运输的过程。它是趋向于热平衡态的驰豫过程,是熵驱动的过程。菲克定律是扩散作用的近似描述,实际过程是从高化学势区域向低化学势区域的转移。扩散作用的速率和混合物的浓度梯度一般不太大,因此通常可以用近平衡态热力学理论进行处理。扩散作用有多种微观解释,较有影响力的是分子动理论的解释和随机行走模型的解释。菲克第一定律(Fick's first law)声明:通过单位面积的粒子数率(通常称为粒子流的通量)大小正比于粒子浓度在该点的梯度,方向与梯度方向相反,其比例系数称为扩散系数。于是公式可以写为:菲克第二定律(Fick's second law)描述浓度场随时间的变化,它是连续性方程的一种,其积分形式为:由于扩散定律本质上是趋向于热平衡态的驰豫过程,因此可以引入物理学上最为成功的唯象理论——热力学理论,对其进行分析。热力学第二定律要求处于热力学平衡态的系统的某一个热力学函数达到极值,具体地说:由于
d
S
≥
d
Q
T
{displaystyle dSgeq {frac {dQ}{T}}}
(其中
d
Q
{displaystyle dQ}
表示1-形式,而并不表示它是某个函数的全微分),在绝热封闭条件下,要求熵达到极大值;在恒温恒压条件下,要求Gibbs自由能达到极小值(在经典的p-V-T系统中进行考虑);在恒温恒容条件下,要求Helmhotz自由能达到极小值。上述条件不管使用哪一个,总可以导出热动平衡条件:力学平衡、热学平衡、化学(及相变)平衡。下面以绝热封闭条件为例进行说明:任取两个相互接触,能够进行能量和物质交流的局部热力学平衡系统,记为A,B。满足下列条件
U
=
U
A
+
U
B
{displaystyle U=U_{A}+U_{B}}
,
V
=
V
A
+
V
B
{displaystyle V=V_{A}+V_{B}}
,
N
=
N
A
+
N
B
{displaystyle N=N_{A}+N_{B}}
;系统总熵为各部分之和
S
=
S
A
+
S
B
{displaystyle S=S_{A}+S_{B}}极值条件要求(在一阶可微条件满足的前提下),有从而在不考虑重力场(以及其他外场和相互作用)的条件下,要求
μ
(
x
)
≡
μ
0
{displaystyle mu (x)equiv mu _{0}}
。由此可见扩散作用的驱动力是化学势空间分布的不平衡,因此在近平衡状态下做线性近似可以得到:作为一种近平衡态的输运现象,扩散作用与其它输运现象有统一的热力学处理方式,其中最著名并且具有高度概括性的是昂萨格(Onsager)线性倒易关系。固体中载流子的运动也有扩散现象。当固体中的电子密度不平衡时,电子将从密度高的区域向密度低的区域扩散。比如用光照射一块半导体的中间,电子将在中间产生,并向两边扩散(如右图所示),并形成扩散电流,也可以用菲克定律描述。扩散系数
D
{displaystyle D}
是菲克定律中的系数
J
=
−
D
∂
n
/
∂
x
{displaystyle J=-D{partial n}/{partial x}}
, J是单位时间单位面积的流量, n是该物质的总数, x是位置(长度)。在细胞生物学领域,扩散是细胞间必要物质(例如氨基酸)传播的主要形式。水分子通过半透膜的扩散被称作渗透。细胞也通过此方式使部分物质进出细胞膜,部分的扩散是需要能量的,不能一概而论。扩散(英语:Diffusion)是物质分子顺着浓度梯度(concentration gradient)或浓度差异移动的现象,即物质分子由高浓度区域移至低浓度区域,直到分子均匀分布为止。扩散是小分子进出细胞膜的的方式之一。细胞生物学意义上的扩散包括自由扩散(即此前所述之扩散),协助扩散两类。协助扩散则由两类膜蛋白进行辅助,一类是通道蛋白,一类是载体蛋白。在溶液反应动力学和生物化学领域,一类重要的反应是扩散控制速率的反应,这一类反应的反应很快,导致反应的速率由反应物在溶质中扩散的速率决定。极限情况是在一个半径为R的区域内,反应物的浓度为0,反应物只要接触到这一个区域的边界,反应物就会立即发生反应而消失,最终建立一个稳态。在三维的情形中,对于双分子反应,反应速率常数
k
=
4
π
(
D
A
+
D
B
)
r
A
B
{displaystyle k=4pi (D_{A}+D_{B})r_{AB}}
,其中
D
{displaystyle D}
是扩散常数,
r
A
B
{displaystyle r_{AB}}
是发生反应的半径,这一个数据可以用于评估酶的催化效率以及配体和受体结合的能力的上限,在一般情况下
k
≈
10
9
s
−
1
M
−
1
{displaystyle kapprox 10^{9}s^{-1}M^{-1}}
。扩散在现代工业的各方面起到了一定作用。其中的一些代表如下:
相关
- Netscape网景通信(英语:Netscape Communications ),以前称为网景通信公司(Netscape Communications Corporation),大部分通常被简称为网景(Netscape)。网景曾经是一家美国的电脑服务公司,以其
- 话话可以指:
- 语音学语音学(Phonetics、发音:/fəˈnɛtɪks/)是研究言语声音(即语音)的语言学分支学科。狭义的语音学对应英语中phonetics(发音)一词,关切的重点在语音的物理、生物、心理等具象本质,
- 松果菊松果菊(学名:Echinacea purpurea),又名紫锥菊、紫锥花,是松果菊属下的一种多年生草本植物,原产于北美洲东部,是美国和加拿大安大略省常见的野外植物之一。松果菊可以长到120厘米(47
- Logit模型罗吉斯回归(英语:Logistic regression,又译作对数几率回归、罗吉斯回归)是一种对数几率模型(英语:Logit model,又译作逻辑模型、评定模型、分类评定模型)是离散选择法模型之一,属于多
- 背景辐射背景辐射(英语:background radiation),又称本底辐射,是在环境中持续存在,可以是源自人为排放或自然存在的辐射,主要的来源有:大约有3%的背景辐射来自其他的人造来源,像是:意外的暴露在
- 硅化木硅化木,又称木变石,是远古树木的遗骸经过长期的化学元素替换过程(特指硅化过程)而形成的化石。生物以木质树的植物形式在地球上出现已久,遍及世界各角落,在世界六大陆都能发现。其
- 鬼笔环肽鬼笔环肽(Phalloidin)是一种环状七肽毒素,隶属于从鹅膏菌科的真菌鬼笔鹅膏中提取的一组毒素(即所谓鬼笔毒素)。它的毒性源于其能够抑制细胞内微丝解聚的特性。自从人们发现鬼笔
- 弗拉基米尔弗拉基米尔(Владимир,英语:Vladimir),俄罗斯城市,弗拉基米尔州首府,位于莫斯科市东北方向190公里克里雅吉马河北岸。面积:124.6平方公里。人口:340,700 (2006年)。弗拉基米尔建
- 荷兰足球甲级联赛荷兰足球甲级联赛(荷兰文:Eredivisie,简称荷甲)是荷兰最高级别足球联赛。1950年前荷兰只有四个地区足球联赛,当中各区最优秀的球队可以晋级参加全国锦标赛,锦标赛采取联赛形式进行