自由扩散

✍ dations ◷ 2025-09-06 11:19:57 #自由扩散
扩散作用是一个基于分子热运动的输运现象,是分子通过布朗运动从高浓度区域(或高化势)向低浓度区域(或低化势)的运输的过程。它是趋向于热平衡态的驰豫过程,是熵驱动的过程。菲克定律是扩散作用的近似描述,实际过程是从高化学势区域向低化学势区域的转移。扩散作用的速率和混合物的浓度梯度一般不太大,因此通常可以用近平衡态热力学理论进行处理。扩散作用有多种微观解释,较有影响力的是分子动理论的解释和随机行走模型的解释。菲克第一定律(Fick's first law)声明:通过单位面积的粒子数率(通常称为粒子流的通量)大小正比于粒子浓度在该点的梯度,方向与梯度方向相反,其比例系数称为扩散系数。于是公式可以写为:菲克第二定律(Fick's second law)描述浓度场随时间的变化,它是连续性方程的一种,其积分形式为:由于扩散定律本质上是趋向于热平衡态的驰豫过程,因此可以引入物理学上最为成功的唯象理论——热力学理论,对其进行分析。热力学第二定律要求处于热力学平衡态的系统的某一个热力学函数达到极值,具体地说:由于 d S ≥ d Q T {displaystyle dSgeq {frac {dQ}{T}}} (其中 d Q {displaystyle dQ} 表示1-形式,而并不表示它是某个函数的全微分),在绝热封闭条件下,要求熵达到极大值;在恒温恒压条件下,要求Gibbs自由能达到极小值(在经典的p-V-T系统中进行考虑);在恒温恒容条件下,要求Helmhotz自由能达到极小值。上述条件不管使用哪一个,总可以导出热动平衡条件:力学平衡、热学平衡、化学(及相变)平衡。下面以绝热封闭条件为例进行说明:任取两个相互接触,能够进行能量和物质交流的局部热力学平衡系统,记为A,B。满足下列条件 U = U A + U B {displaystyle U=U_{A}+U_{B}} , V = V A + V B {displaystyle V=V_{A}+V_{B}} , N = N A + N B {displaystyle N=N_{A}+N_{B}} ;系统总熵为各部分之和 S = S A + S B {displaystyle S=S_{A}+S_{B}}极值条件要求(在一阶可微条件满足的前提下),有从而在不考虑重力场(以及其他外场和相互作用)的条件下,要求 μ ( x ) ≡ μ 0 {displaystyle mu (x)equiv mu _{0}} 。由此可见扩散作用的驱动力是化学势空间分布的不平衡,因此在近平衡状态下做线性近似可以得到:作为一种近平衡态的输运现象,扩散作用与其它输运现象有统一的热力学处理方式,其中最著名并且具有高度概括性的是昂萨格(Onsager)线性倒易关系。固体中载流子的运动也有扩散现象。当固体中的电子密度不平衡时,电子将从密度高的区域向密度低的区域扩散。比如用光照射一块半导体的中间,电子将在中间产生,并向两边扩散(如右图所示),并形成扩散电流,也可以用菲克定律描述。扩散系数 D {displaystyle D} 是菲克定律中的系数 J = − D ∂ n / ∂ x {displaystyle J=-D{partial n}/{partial x}} , J是单位时间单位面积的流量, n是该物质的总数, x是位置(长度)。在细胞生物学领域,扩散是细胞间必要物质(例如氨基酸)传播的主要形式。水分子通过半透膜的扩散被称作渗透。细胞也通过此方式使部分物质进出细胞膜,部分的扩散是需要能量的,不能一概而论。扩散(英语:Diffusion)是物质分子顺着浓度梯度(concentration gradient)或浓度差异移动的现象,即物质分子由高浓度区域移至低浓度区域,直到分子均匀分布为止。扩散是小分子进出细胞膜的的方式之一。细胞生物学意义上的扩散包括自由扩散(即此前所述之扩散),协助扩散两类。协助扩散则由两类膜蛋白进行辅助,一类是通道蛋白,一类是载体蛋白。在溶液反应动力学和生物化学领域,一类重要的反应是扩散控制速率的反应,这一类反应的反应很快,导致反应的速率由反应物在溶质中扩散的速率决定。极限情况是在一个半径为R的区域内,反应物的浓度为0,反应物只要接触到这一个区域的边界,反应物就会立即发生反应而消失,最终建立一个稳态。在三维的情形中,对于双分子反应,反应速率常数 k = 4 π ( D A + D B ) r A B {displaystyle k=4pi (D_{A}+D_{B})r_{AB}} ,其中 D {displaystyle D} 是扩散常数, r A B {displaystyle r_{AB}} 是发生反应的半径,这一个数据可以用于评估酶的催化效率以及配体和受体结合的能力的上限,在一般情况下 k ≈ 10 9 s − 1 M − 1 {displaystyle kapprox 10^{9}s^{-1}M^{-1}} 。扩散在现代工业的各方面起到了一定作用。其中的一些代表如下:

相关

  • 利-萨二氏心内膜炎利-萨二氏心内膜炎(Libman–Sacks endocarditis)是一种与全身性红斑性狼疮有关的非细菌性心内膜炎。为红斑性狼疮最常见的心脏病变之一。本疾病最早于1924年由纽约西奈山医院(
  • 日蚀日食(英语:Solar eclipse),又称日蚀,是一种天文现象,属于食的一种,只在月球运行至太阳与地球之间时发生。这时,对地球上的部分地区来说,月球位于太阳前方,因此来自太阳的部分或全部光
  • 猎户座猎户座计划(Project Orion)是一项旨在直接地以探测器后方一连串的原子弹爆炸来驱动(核脉冲推进)的航天器研究计划。这种飞行器的早期版本被提及到从地面上起飞会带有显著相关的
  • 三相点三相点是指在热力学里,使一种物质三相(气相、液相、固相)达到热力学平衡共存时的一组温度和压强数值。比如,水的固-液-气-三相点是0.01℃(273.16K)及611.73Pa (约等于标准大气压101
  • 鲎 (拼音:hòu;注音:ㄏㄡˋ;闽南语白话字:hāu;粤拼:hau6)为鲎科(学名:Limulidae)动物的通称,又名“马蹄蟹”、“蟹兜”、“夫妻鱼”,属剑尾目的海生节肢动物,由于它在地球上的起始时间比恐
  • 嫁接嫁接是园艺技术,其中植物的组织被结合以便一起继续其生长。组合植物的上部称为接穗(/ˈsaɪən/),而下部称为砧木。该技术最常用于园艺和农业贸易的商业种植植物无性繁殖。在
  • C-DNAC-DNA又称C型DNA,是一种DNA双螺旋型态,目前已知C-DNA与B-DNA(自然界最常见的DNA型态)有相似的构象。会出现于含锂离子,且湿度较低的状态下。研究显示,B与C两型的DNA实际上都含有两
  • 人权俄罗斯联邦的公民权利和自由是在由1993年通过的《俄罗斯联邦宪法》的第2章中所授予的。 俄罗斯签署了《世界人权宣言》,也批准了其他一些国际公约,包括《公民权利和政治权利国
  • 冈比亚在1965年至1970年之间,冈比亚(英语:The Gambia)是一个独立的主权国家,与英国和以英国君主为首的国家共享国家元首。它是现代冈比亚共和国的前身。1965年,根据《1964年冈比亚独立法
  • 英国第五台英国第五台(Channel Five)是英国在1997年开始播出的一家商业电视台。1990年,随着英国修改广播法,民间可以设立新的无线电视台,英国第五台随之诞生。英国第五台是独立电视台之后英